【BZOJ3319】黑白树

Description

给定一棵树,边的颜色为黑或白,初始时全部为白色。维护两个操作:
1.查询u到根路径上的第一条黑色边的标号。
2.将u到v    路径上的所有边的颜色设为黑色。
Notice:这棵树的根节点为1

Input

第一行两个数n,m分别表示点数和操作数。
接下来n-?    1行,每行2个数u,v.表示一条u到v的边。
接下来m行,每行为以下格式:
1 v 表示第一个操作
2 v u 表示第二种操作

Output

对于每个询问,输出相应答案。如果不存在,输出0。

Sample Input

5 4
1 2
1 3
2 4
2 5
1 2
2 2 3
1 3
1 4

Sample Output

0
2
1

HINT

对于    100%    的数据:n,m<=10^6

题解:本题要用到两边并查集。先用并查集预处理出每条边第一次变黑的时间,然后时间倒流。如果这个点是白点,则将该点的并查集与其父亲的并查集合并;如果是黑点则不合并。这样,每个点所在的并查集的根节点的边就是路径上第一个黑边。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1000010;
int n,m,cnt;
int to[maxn<<1],next[maxn<<1],head[maxn],vis[maxn],f[maxn],v[maxn];
int dep[maxn],fa[maxn],son[maxn],top[maxn],siz[maxn],q[maxn],ans[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void add(int a,int b)
{
to[++cnt]=b,next[cnt]=head[a],head[a]=cnt;
}
void dfs1(int x)
{
siz[x]=1;
for(int i=head[x];i;i=next[i]) if(to[i]!=fa[x])
{
fa[to[i]]=x,dep[to[i]]=dep[x]+1,v[to[i]]=(i+1)>>1,dfs1(to[i]),siz[x]+=siz[to[i]];
if(siz[to[i]]>siz[son[x]]) son[x]=to[i];
}
}
void dfs2(int x,int tp)
{
top[x]=tp;
if(son[x]) dfs2(son[x],tp);
for(int i=head[x];i;i=next[i]) if(to[i]!=fa[x]&&to[i]!=son[x]) dfs2(to[i],to[i]);
}
int lca(int x,int y)
{
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
x=fa[top[x]];
}
if(dep[x]<dep[y]) return x;
return y;
}
int find(int x)
{
return (f[x]==x)?x:(f[x]=find(f[x]));
}
int main()
{
n=rd(),m=rd();
int i,j,a,b,c;
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b),add(b,a);
for(i=1;i<=n;i++) f[i]=i;
dep[1]=1,dfs1(1),dfs2(1,1);
memset(head,0,sizeof(head)),cnt=0;
for(i=1;i<=m;i++)
{
if(rd()==1) q[i]=rd();
else
{
a=rd(),b=rd(),c=lca(a,b);
a=find(a),b=find(b);
while(dep[a]>dep[c]) f[a]=find(fa[a]),add(i,a),vis[a]=1,a=f[a];
while(dep[b]>dep[c]) f[b]=find(fa[b]),add(i,b),vis[b]=1,b=f[b];
}
}
for(i=1;i<=n;i++) f[i]=!vis[i]?fa[i]:i;
for(i=m;i>=1;i--)
{
if(q[i]) ans[i]=v[find(q[i])];
else for(j=head[i];j;j=next[j]) f[to[j]]=find(fa[to[j]]);
}
for(i=1;i<=m;i++) if(q[i]) printf("%d\n",ans[i]);
return 0;
}

【BZOJ3319】黑白树 并查集的更多相关文章

  1. BZOJ 3319 黑白树 并查集+线段树

    这这这这这这什么毒瘤题!!!!!!!!!!!!!!!!!!!!!!!!!!!! 卡LCT(优秀的LCT由于是均摊本身就带着2,3的常数在,而且这道题对于LCT标记十分难维护,又得乘上4,5然后就炸了) ...

  2. BZOJ 3319: 黑白树 并查集 + 离线 + 思维

    Description 给定一棵树,边的颜色为黑或白,初始时全部为白色.维护两个操作: 1.查询u到根路径上的第一条黑色边的标号. 2.将u到v    路径上的所有边的颜色设为黑色. Notice:这 ...

  3. [WC2005]双面棋盘(线段树+并查集)

    线段树+并查集维护连通性. 好像 \(700ms\) 的时限把我的常数超级大的做法卡掉了, 必须要开 \(O_2\) 才行. 对于线段树的每一个结点都开左边的并查集,右边的并查集,然后合并. \(Co ...

  4. 洛谷 - P1552 - 派遣 - 左偏树 - 并查集

    首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...

  5. 洛谷 - P3377 - 【模板】左偏树(可并堆) - 左偏树 - 并查集

    https://www.luogu.org/problemnew/show/P3377 左偏树+并查集 左偏树维护两个可合并的堆,并查集维护两个堆元素合并后可以找到正确的树根. 关键点在于删除一个堆的 ...

  6. 2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集)

    2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集) https://www.luogu.com.cn/problem/CF811E Ste ...

  7. BZOJ 3319: 黑白树 树+并查集+未调完+神题

    Code: #include<bits/stdc++.h> #define maxn 1000003 using namespace std; char *p1,*p2,buf[10000 ...

  8. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  9. bzoj3319: 黑白树

    Description 给定一棵树,边的颜色为黑或白,初始时全部为白色.维护两个操作:1.查询u到根路径上的第一条黑色边的标号.2.将u到v    路径上的所有边的颜色设为黑色.Notice:这棵树的 ...

随机推荐

  1. LeetCode OJ--Anagrams **

    https://oj.leetcode.com/problems/anagrams/ 在一个vector<string>中,找到所有经过顺序变换,可以变成一样的 string. 首先,对每 ...

  2. android 集成友盟分享之后,想自定义分享面板的看过来

    第一种情况 首先上传一张默认的友盟分享的效果图 看起来还不错,但是总是有这样那样的原因,需要我们对默认效果做出一些改变. 第二种情况 如果你想做出下面的效果: 或者这样的效果 : 总之上面的效果总是在 ...

  3. ASP.NET MVC 利用Razor引擎生成静态页

    实现原理及步骤: 1.通过ViewEngines.Engines.FindView查找到对应的视图,如果是部分视图,则用:ViewEngines.Engines.FindPartialView: 2. ...

  4. springboot集合pagehelper分页不生效的原因

    也可以

  5. 聊聊、Zookeeper API

    今天我们来说说 Zookeeper 客户端启动,整个文章分三个部分:第一部分是 Zookeeper 原生 API 客户端,第二部分是开源客户端 ZkClient,第三部分是开源客户端 Curator. ...

  6. 前端模板adminlte

    adminlet是一个前端模板,包含各种各样的功能,自己的网站可以根据需要进行修改:可以免费使用,也有收费增强版,界面如下: 参考: 1.https://adminlte.io/ 2.https:// ...

  7. oracle手动修改listener.ora和tnsnames.ora之后竟然无效

    oracle手动修改listener.ora和tnsnames.ora之后竟然无效 花式重启都没有生效,需要使用Net Configuration Assistant来进行刷一下,重新生成的监听还是一 ...

  8. 转:Kafka、RabbitMQ、RocketMQ消息中间件的对比 —— 消息发送性能 (阿里中间件团队博客)

    from: http://jm.taobao.org/2016/04/01/kafka-vs-rabbitmq-vs-rocketmq-message-send-performance/ 引言 分布式 ...

  9. Android API Guides---Layouts

    布局定义了视觉结构的用户界面.如活动或应用程序插件的用户界面. 您能够通过两种方式申报的布局: 声明在XML UI元素. Android提供了相应视图类和子类,如那些部件和布局一个简单的XML词汇表. ...

  10. nginx apache防盗链

    要实现防盗链,我们就必须先理解盗链的实现原理,提到防盗链的实现原理就不得不从HTTP协议说起,在HTTP协议中,有一个表头字段叫referer,采用URL的格式来表示从哪儿链接到当前的网页或文件.换句 ...