jzoj6008. 【THUWC2019模拟2019.1.18】Sequence (矩阵加速)
题面
茉优最近研究发现,一个人的想愿能力可以认为是字符串S的一个子串S[l,r],而连接值可以认为是这个子串的本质不同子序列个数。现在她想验证她的结论是否正确,于是她给了你Q个询问,希望你帮她来计算,注意空串也是子序列。
题解
考场上暴力都打错
先考虑暴力,设\(f_i\)为\(i\)下标为终止位置的子序列个数,那么\(f_i\)就等于前面的所有\(f_j,j<i\)的和,不过要减去所有\(s_j=s_i\)的\(f_j\),否则会重复
然后考虑把\(f_i\)给前缀和,先离散化,设一个向量,其中\(A_i\)表示以\(i\)这个值为结尾的子序列个数,最后一个值表示空集,那么转移矩阵就是其它都和单位矩阵一样,第\(s_i\)列全为\(1\)
然后考虑转移矩阵的逆矩阵,就是其它和单位矩阵一样,第\(s_i\)列除主对角线上全为\(-1\),主对角线上为\(1\)
那么,只要我们能够维护\(B_1B_2...B_i\),,记为\(h_i\),以及\(B^{-1}_iB^{-1}_{i-1}...B^{-1}_1\),记为\(c_i\)对于询问,我们就可以快速表示了,为\([0,0,0,...,1]\times h_{l-1}\times c_r\)
如何维护前缀积?以\(h_i\)为例,发现一个矩阵左乘上\(B_i\),就是其它列都不变,第\(s_i\)列的每一个数都变为这一行所有元素的和,动态维护每行的元素和并单列修改即可。而一个矩阵右乘上\(B^{-1}_i\),第\(s_i\)行不变,其它列每个元素\(A_{i,j}\)都减去\(A_{s_i,j}\),可以打个\(tag\)
然而这样是\(O(53^2|S|)\)
考虑\([0,0,0,...,1]\times h_{l-1}\),最终结果就是\(h_{i-1}\)的最下面一行,你们我们对于每个位置的\(h\)只要记录最下面一行就好了。后面要乘上\(c_r\),因为我们最终需要的是整个向量所有数的和,发现每一项都乘了对应行的和,所以每个位置只要记录对应行的和就行了
复杂度\(O(53|S|)\)
///minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
inline int max(const R int &x,const R int &y){return x>y?x:y;}
inline int min(const R int &x,const R int &y){return x<y?x:y;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res=1,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1e6+5,M=52,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int h[N][M+5],c[N][M+5],A[M+5][M+5],tag[M],sum[M];
char s[N];
int a,b,p,q,r,x,y,z,Q,n,la,lb;
inline int calc(R char ch){return ch>='a'?ch-'a'+26:ch-'A';}
int main(){
freopen("sequence.in","r",stdin);
freopen("sequence.out","w",stdout);
scanf("%s",s+1),n=strlen(s+1);
scanf("%d%d%d%d%d%d",&Q,&a,&b,&p,&q,&r);
fp(i,0,M)A[i][i]=sum[i]=1;
fp(i,1,n){
int v=calc(s[i]);
fp(j,0,M){
sum[j]=dec(sum[j],A[j][v]),A[j][v]=add(A[j][v],sum[j]);
sum[j]=add(sum[j],A[j][v]);
h[i][j]=sum[j];
}
}
memset(A,0,sizeof(A));
fp(i,0,M)A[i][i]=1;
fp(i,1,n){
int v=calc(s[i]);
fp(j,0,M){
A[v][j]=dec(A[v][j],tag[j]);
tag[j]=add(tag[j],A[v][j]);
A[v][j]=add(A[v][j],tag[j]);
c[i][j]=dec(A[M][j],tag[j]);
}
}
while(Q--){
la=a,lb=b;
a=(1ll*la*p+1ll*lb*q+z+r)%P;
b=(1ll*lb*p+1ll*la*q+z+r)%P;
x=min(a%n,b%n)+1,y=max(a%n,b%n)+1;
if(x==1)z=h[y][M];
else{
z=0;
fp(i,0,M)z=add(z,mul(c[x-1][i],h[y][i]));
}
// printf("QAQ %d %d %d\n",x,y,z);
}
printf("%d\n",z);
return 0;
}
jzoj6008. 【THUWC2019模拟2019.1.18】Sequence (矩阵加速)的更多相关文章
- jzoj6009. 【THUWC2019模拟2019.1.18】Counting (dp)
Description 羽月最近发现,她发动能力的过程是这样的: 构建一个 V 个点的有向图 G,初始为没有任何边,接下来羽月在脑中构建出一个长度为 E 的边的序列,序列中元素两两不同,然后羽月将这些 ...
- 6362. 【NOIP2019模拟2019.9.18】数星星
题目描述 题解 一种好想/好写/跑得比**记者还快的做法: 对所有询问排序,按照R递增的顺序来处理 维护每个点最后一次被覆盖的时间,显然当前右端点为R时的答案为所有时间≥L的点的权值之和 LCT随便覆 ...
- jzoj6003. 【THUWC2019模拟2019.1.16】Square (乱搞)
题面 题解 不难发现,如果一行最后被染色,那么这行的颜色肯定一样,如果倒数第二个被染色,那么除了被最后一个染色的覆盖的那一部分剩下的颜色肯定一样 于是题目可以转化为每一次删去一行或一列颜色相同的,问最 ...
- 6361. 【NOIP2019模拟2019.9.18】鲳数
题目 题目大意 给你一个区间\([l,r]\),求这个区间内每个整数的十进制上从高位到低位的逆序对个数之和. 思考历程 一开始就知道这是个数位DP-- 结果一直都没有调出来,心态崩了-- 正解 先讲讲 ...
- 2019.3.18考试&2019.3.19考试&2019.3.21考试
2019.3.18 C O D E T1 树上直接贪心,环上for一遍贪心 哇说的简单,码了将近一下午终于码出来了 感觉自己码力/写题策略太糟糕了,先是搞了一个细节太多的写法最后不得不弃疗了,然后第二 ...
- 【 CodeForces - 392C】 Yet Another Number Sequence (二项式展开+矩阵加速)
Yet Another Number Sequence Description Everyone knows what the Fibonacci sequence is. This sequence ...
- hdu_5950_Recursive sequence(矩阵快速幂)
题目链接:hdu_5950_Recursive sequence 题意:递推求解:F(n) = 2*F(n-2) + F(n-1) + n4 和F(1) = a,F(2) = b: 题解: 一看数据范 ...
- NOIP模拟 17.8.18
NOIP模拟17.8.18 A.小菜一碟的背包[题目描述]Blice和阿强巴是好朋友但萌萌哒Blice不擅长数学,所以阿强巴给了她一些奶牛做练习阿强巴有 n头奶牛,每头奶牛每天可以产一定量的奶,同时也 ...
- NOIP模拟测试17&18
NOIP模拟测试17&18 17-T1 给定一个序列,选取其中一个闭区间,使得其中每个元素可以在重新排列后成为一个等比数列的子序列,问区间最长是? 特判比值为1的情况,预处理比值2~1000的 ...
随机推荐
- Java基础之I/O流
一.数据流的基本概念 数据流是一串连续不断的数据的集合,就象水管里的水流,在水管的一端一点一点地供水,而在水管的另一端看到的是一股连续不断的水流.数据写入程序可以是一段.一段地向数据流管道中写入数据, ...
- CUDA:纹理内存
纹理内存: 与常量内存类似,纹理内存是另一种形式的只读内存,并且同样缓存在芯片上.因此某些情况下能够减少对内存的请求并提供高效的内存带宽.纹理内存是专门为那些在内存访问模式中存在大量空间局部性的图形应 ...
- 【linux】新添加一块硬盘制作LVM卷并进行分区挂载
linux服务器新添加一块硬盘,可以直接将盘格式化挂载就能用,比如挂载在/usr/local目录,但是这样有一个弊端,就是如果这一块磁盘满了,后续想要扩容的话,不能继续挂载这个/usr/local挂载 ...
- 使用urllib2打开网页的三种方法(Python2)
python2才有urllib2模块,python3把urllib和urllib2封装成了urllib模块 使用urllib2打开网页的三种方法 #coding:utf-8 import urllib ...
- 关于android R.java文件无法创建的问题
R.java文件无法创建的原因网上有很多说法普遍是以下两种: 1. xml文件有错误: 解决方法就是找到哪个xml有错然后把错误修复就OK了. 2.编码问题 这时候只要把xml文件的编码改成utf8就 ...
- HDU - 4990 Reading comprehension 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4990 题意 初始的ans = 0 给出 n, m for i in 1 -> n 如果 i 为奇 ...
- 编辑框的WM_MOUSELEAVE和WM_MOUSEHOVER使用
// 参考资料 // http://www.cnblogs.com/weiqubo/archive/2011/04/14/2016323.html 最近工作需要,需要自定义编辑框,改写编辑框CEdit ...
- jQuery 中的常用函数
on() : 方法在被选元素及子元素上添加一个或多个事件处理程序.自1.7 版本起,on()方法是 bind(),live() 和 delegate()方法的替代品 语法: $(selector).o ...
- 使用jedisPool管理jedis,使用jedis操作redis
ps:jedis是redis在java中的客户端操作工具 package com.test; 2 3 import java.util.HashMap; 4 import java.util.Iter ...
- L91
Make Healthy Choices Easier Options Telling people to change unhealthy behaviors doesn't work. Other ...