BZOJ3784:树上的路径
浅谈树分治:https://www.cnblogs.com/AKMer/p/10014803.html
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3784
难得地看了题解,发现居然还有点分序这么个玩意儿……
对于点分治时遍历过的点的长度为\(nlogn\)的序列,我们称它为点分序。
然后这题就是树上超级钢琴,在点分序上做就行了。对于每一条边,在点分序里能与其匹配的边是一段区间。
时间复杂度:\(O(nlogn*(1+log(nlogn)))\)
空间复杂度:\(O(nlogn*log(nlogn))\)
代码如下:
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=5e4+5;
bool vis[maxn];
int n,m,mx,rt,N,tot,cnt,L,R;
int now[maxn],pre[maxn*2],son[maxn*2],val[maxn*2];
int siz[maxn],a[maxn*20],Log[maxn*20],f[20][maxn*20];
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
void add(int a,int b,int c) {
pre[++tot]=now[a];
now[a]=tot,son[tot]=b,val[tot]=c;
}
struct node {
int v,pos,l,r;
node() {}
node(int _v,int _pos,int _l,int _r) {
v=_v,pos=_pos,l=_l,r=_r;
}
bool operator<(const node &a)const {
return v<a.v;
}
};
struct Heap {
int tot;
node tree[maxn*26];
void ins(node res) {
tree[++tot]=res;
int pos=tot;
while(pos>1) {
if(tree[pos>>1]<tree[pos])
swap(tree[pos>>1],tree[pos]),pos>>=1;
else break;
}
}
node pop() {
node res=tree[1];
tree[1]=tree[tot--];
int pos=1,son=2;
while(son<=tot) {
if(son<tot&&tree[son]<tree[son|1])son|=1;
if(tree[pos]<tree[son])
swap(tree[son],tree[pos]),pos=son,son=pos<<1;
else break;
}
return res;
}
}T;
void find_rt(int fa,int u) {
int res=0;siz[u]=1;
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v]&&v!=fa)find_rt(u,v),siz[u]+=siz[v],res=max(res,siz[v]);
res=max(res,N-siz[u]);
if(res<mx)mx=res,rt=u;
}
void solve(int fa,int u,int dis) {
a[++cnt]=dis;T.ins(node(a[mx]+dis,cnt,L,R)),siz[u]=1;
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v]&&v!=fa)solve(u,v,dis+val[p]),siz[u]+=siz[v];
}
void work(int u,int size) {
N=size,mx=rt=n+1,find_rt(0,u);
u=rt,vis[u]=1,a[++cnt]=0,L=cnt,mx=cnt;
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v]) {
R=cnt,solve(u,v,val[p]);
for(int j=R+1;j<=cnt;j++)
if(a[j]>a[mx])mx=j;
}
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v])work(v,siz[v]);
}
int fake(int num1,int num2) {
if(a[num1]>a[num2])return num1;
return num2;
}
int query(int l,int r) {
int x=Log[r-l+1];
return fake(f[x][l],f[x][r-(1<<x)+1]);
}
void make_st() {
Log[0]=-1;
for(int i=1;i<=cnt;i++)
f[0][i]=i,Log[i]=Log[i>>1]+1;
for(int i=1;i<=19;i++)
for(int j=1;j+(1<<i)-1<=cnt;j++)
f[i][j]=fake(f[i-1][j],f[i-1][j+(1<<(i-1))]);
}
int main() {
n=read(),m=read();
for(int i=1;i<n;i++) {
int a=read(),b=read(),c=read();
add(a,b,c),add(b,a,c);
}work(1,n),make_st();
for(int i=1;i<=m;i++) {
node tmp=T.pop();
int pos=query(tmp.l,tmp.r);
if(pos-1>=tmp.l)
T.ins(node(a[query(tmp.l,pos-1)]+a[tmp.pos],tmp.pos,tmp.l,pos-1));
if(pos+1<=tmp.r)
T.ins(node(a[query(pos+1,tmp.r)]+a[tmp.pos],tmp.pos,pos+1,tmp.r));
printf("%d\n",tmp.v);
}
return 0;
}
BZOJ3784:树上的路径的更多相关文章
- BZOJ3784 : 树上的路径
树的点分治,在分治的时候将所有点到根的距离依次放入一个数组q中. 对于一棵子树里的点,合法的路径一定是q[L]..q[R]的某个数加上自己到重心的距离. 定义五元组(v,l,m,r,w),表示当前路径 ...
- 2019.01.20 bzoj3784: 树上的路径(二分答案+点分治)
传送门 点分治好题. 题意简述:给一棵带边权的树,问所有路径中前mmm大的.m≤300000m\le300000m≤300000 思路: 网上有题解写了可以通过什么点分治序转化成超级钢琴那道题的做法蒟 ...
- BZOJ3784树上的路径
题目描述 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a<b.将这n*(n-1)/2个距离从大到小排序, ...
- 【BZOJ3784】树上的路径 点分治序+ST表
[BZOJ3784]树上的路径 Description 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a< ...
- 【BZOJ-3784】树上的路径 点分治 + ST + 堆
3784: 树上的路径 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 462 Solved: 153[Submit][Status][Discuss ...
- codevs 2756树上的路径
题意: 2756 树上的路径 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给出一棵树,求出最小的k,使得,且在树 ...
- bzoj 3784: 树上的路径 堆维护第k大
3784: 树上的路径 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 88 Solved: 27[Submit][Status][Discuss] ...
- 树上的路径 BZOJ 3784
树上的路径 [问题描述] 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a<b.将这n*(n-1)/2个距 ...
- Codevs 2756 树上的路径
2756 树上的路径 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给出一棵树,求出最小的k,使得,且在树中存在 ...
随机推荐
- android之Context对各种服务的管理
经常,当我们须要用到服务的时候能够通果Context来获取:Context.getSystemService(name):比方:当我们想知道当前电话状态(来电/去电/sim卡状态等)时候,我们能够通过 ...
- SQL Server外连接、内连接、交叉连接
小编在做组织部维护最后收尾工作的时候,遇到了这样一个问题,须要将定性考核得分查出来.定量考核相应的数据查出来并进行得分计算.附加分查出来,最后将这三部分信息汇总之后得到总成绩,假设当中一项成绩没有进行 ...
- 嵌入式c语言笔试
1 读程序段,回答问题int main(int argc,char *argv[]){int c=9,d=0;c=c++%5;d=c;printf("d=%d\n",d);retu ...
- spring AOP(切面) 表达式介绍
在 spring AOP(切面) 例子基础上对表达式进行介绍 1.添加接口删除方法 2.接口实现类 UserDaoServer 添加实现接口删除方法 3.测试类调用delUser方法 4. 输出结果截 ...
- 如何理解API,API 是如何工作的
大神博客:https://blog.csdn.net/cumtdeyurenjie/article/details/80211896
- inclusion_tag 看图
- Circling Round Treasures CodeForces - 375C
C. Circling Round Treasures time limit per test 1 second memory limit per test 256 megabytes input s ...
- 数据结构---python---表
一.list的基本实现技术 在数据结构中,如果用python实现线性表,无疑要提到list,list是一种元素个数可变的线性表(而tuple是不变的表,不支持改变其内部状态的任何操作,其他与list性 ...
- 【百度之星复赛】T5 Valley Numer
Valley Numer Problem Description 众所周知,度度熊非常喜欢数字. 它最近发明了一种新的数字:Valley Number,像山谷一样的数字. 当一个数字,从左到右依次看过 ...
- Large-scale Incremental Processing Using Distributed Transactions and Notifications
Large-scale Incremental Processing Using Distributed Transactions and Notifications