BZOJ3784:树上的路径
浅谈树分治:https://www.cnblogs.com/AKMer/p/10014803.html
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3784
难得地看了题解,发现居然还有点分序这么个玩意儿……
对于点分治时遍历过的点的长度为\(nlogn\)的序列,我们称它为点分序。
然后这题就是树上超级钢琴,在点分序上做就行了。对于每一条边,在点分序里能与其匹配的边是一段区间。
时间复杂度:\(O(nlogn*(1+log(nlogn)))\)
空间复杂度:\(O(nlogn*log(nlogn))\)
代码如下:
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=5e4+5;
bool vis[maxn];
int n,m,mx,rt,N,tot,cnt,L,R;
int now[maxn],pre[maxn*2],son[maxn*2],val[maxn*2];
int siz[maxn],a[maxn*20],Log[maxn*20],f[20][maxn*20];
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
void add(int a,int b,int c) {
pre[++tot]=now[a];
now[a]=tot,son[tot]=b,val[tot]=c;
}
struct node {
int v,pos,l,r;
node() {}
node(int _v,int _pos,int _l,int _r) {
v=_v,pos=_pos,l=_l,r=_r;
}
bool operator<(const node &a)const {
return v<a.v;
}
};
struct Heap {
int tot;
node tree[maxn*26];
void ins(node res) {
tree[++tot]=res;
int pos=tot;
while(pos>1) {
if(tree[pos>>1]<tree[pos])
swap(tree[pos>>1],tree[pos]),pos>>=1;
else break;
}
}
node pop() {
node res=tree[1];
tree[1]=tree[tot--];
int pos=1,son=2;
while(son<=tot) {
if(son<tot&&tree[son]<tree[son|1])son|=1;
if(tree[pos]<tree[son])
swap(tree[son],tree[pos]),pos=son,son=pos<<1;
else break;
}
return res;
}
}T;
void find_rt(int fa,int u) {
int res=0;siz[u]=1;
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v]&&v!=fa)find_rt(u,v),siz[u]+=siz[v],res=max(res,siz[v]);
res=max(res,N-siz[u]);
if(res<mx)mx=res,rt=u;
}
void solve(int fa,int u,int dis) {
a[++cnt]=dis;T.ins(node(a[mx]+dis,cnt,L,R)),siz[u]=1;
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v]&&v!=fa)solve(u,v,dis+val[p]),siz[u]+=siz[v];
}
void work(int u,int size) {
N=size,mx=rt=n+1,find_rt(0,u);
u=rt,vis[u]=1,a[++cnt]=0,L=cnt,mx=cnt;
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v]) {
R=cnt,solve(u,v,val[p]);
for(int j=R+1;j<=cnt;j++)
if(a[j]>a[mx])mx=j;
}
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v])work(v,siz[v]);
}
int fake(int num1,int num2) {
if(a[num1]>a[num2])return num1;
return num2;
}
int query(int l,int r) {
int x=Log[r-l+1];
return fake(f[x][l],f[x][r-(1<<x)+1]);
}
void make_st() {
Log[0]=-1;
for(int i=1;i<=cnt;i++)
f[0][i]=i,Log[i]=Log[i>>1]+1;
for(int i=1;i<=19;i++)
for(int j=1;j+(1<<i)-1<=cnt;j++)
f[i][j]=fake(f[i-1][j],f[i-1][j+(1<<(i-1))]);
}
int main() {
n=read(),m=read();
for(int i=1;i<n;i++) {
int a=read(),b=read(),c=read();
add(a,b,c),add(b,a,c);
}work(1,n),make_st();
for(int i=1;i<=m;i++) {
node tmp=T.pop();
int pos=query(tmp.l,tmp.r);
if(pos-1>=tmp.l)
T.ins(node(a[query(tmp.l,pos-1)]+a[tmp.pos],tmp.pos,tmp.l,pos-1));
if(pos+1<=tmp.r)
T.ins(node(a[query(pos+1,tmp.r)]+a[tmp.pos],tmp.pos,pos+1,tmp.r));
printf("%d\n",tmp.v);
}
return 0;
}
BZOJ3784:树上的路径的更多相关文章
- BZOJ3784 : 树上的路径
树的点分治,在分治的时候将所有点到根的距离依次放入一个数组q中. 对于一棵子树里的点,合法的路径一定是q[L]..q[R]的某个数加上自己到重心的距离. 定义五元组(v,l,m,r,w),表示当前路径 ...
- 2019.01.20 bzoj3784: 树上的路径(二分答案+点分治)
传送门 点分治好题. 题意简述:给一棵带边权的树,问所有路径中前mmm大的.m≤300000m\le300000m≤300000 思路: 网上有题解写了可以通过什么点分治序转化成超级钢琴那道题的做法蒟 ...
- BZOJ3784树上的路径
题目描述 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a<b.将这n*(n-1)/2个距离从大到小排序, ...
- 【BZOJ3784】树上的路径 点分治序+ST表
[BZOJ3784]树上的路径 Description 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a< ...
- 【BZOJ-3784】树上的路径 点分治 + ST + 堆
3784: 树上的路径 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 462 Solved: 153[Submit][Status][Discuss ...
- codevs 2756树上的路径
题意: 2756 树上的路径 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给出一棵树,求出最小的k,使得,且在树 ...
- bzoj 3784: 树上的路径 堆维护第k大
3784: 树上的路径 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 88 Solved: 27[Submit][Status][Discuss] ...
- 树上的路径 BZOJ 3784
树上的路径 [问题描述] 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a<b.将这n*(n-1)/2个距 ...
- Codevs 2756 树上的路径
2756 树上的路径 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给出一棵树,求出最小的k,使得,且在树中存在 ...
随机推荐
- mysql忘记password
有时候突然忘记MySQL的password会真的不爽,这里介绍一种MySQLpassword忘记时重置password的方法,操作系统win8,MySql version:5.6.10 1 在任务管理 ...
- 淘宝数据库OceanBase SQL编译器部分 源代码阅读--解析SQL语法树
OceanBase是阿里巴巴集团自主研发的可扩展的关系型数据库,实现了跨行跨表的事务,支持数千亿条记录.数百TB数据上的SQL操作. 在阿里巴巴集团下,OceanBase数据库支持了多个重要业务的数据 ...
- mybatis的拦截器及分页机制
https://blog.csdn.net/ssuperlg/article/details/79847889
- Linux内核编译过程分析
http://pan.baidu.com/s/1mgtACVu 其中是我总结生成的一些文档,以便于理解当我们输入make uImage后,系统是怎么一步一步生成uImage的,我采用的是逆向分析的方法 ...
- 百度富文本编辑器Ueditor上传图片时标签中添加宽高
ueditor.all.js中:直接搜索callback() function callback(){ try{ var link, json, loader, body = (iframe.cont ...
- Drupal 主题的表现形式
1.template.php /** * Implements hook_theme(). */ function yourtheme_theme($existing, $type, $theme ...
- 自己动手写CPU之第七阶段(2)——简单算术操作指令实现过程
将陆续上传本人写的新书<自己动手写CPU>.今天是第25篇.我尽量每周四篇 亚马逊的预售地址例如以下,欢迎大家围观呵! http://www.amazon.cn/dp/b00mqkrlg8 ...
- T-SQL高级查询语句(父子查询)
T-SQL高级查询语句 高级查询 1.连接查询,对结果集列的扩展 select * from info select * from info,nation #形成笛卡尔积 select * from ...
- MySQL 5.7 等高版本关于JDBC驱动的几个问题
https://blog.csdn.net/dj673344908/article/details/85223313 mysql 5.7 用8.0版本的驱动可以,5.1版本也可以,5.5.5.6.5. ...
- EasyNVR RTSP转RTMP-HLS流媒体服务器前端构建之:内部搜索功能的实现
上一篇介绍了处理接口获取的数据,本篇将介绍如何在接收到的数据中搜索出自己符合条件的数据: 为了页面的美观,我们往往会以分页的形式来进行数据的展示.但是,当需要展示出来的数据太多的时候,我们很难迅速的找 ...