【bzoj3526】[Poi2014]Card 线段树区间合并
题目描述
有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i]。现在,有m个熊孩子来破坏你的卡片了!
第i个熊孩子会交换c[i]和d[i]两个位置上的卡片。
每个熊孩子捣乱后,你都需要判断,通过任意翻转卡片(把正面变为反面或把反面变成正面,但不能改变卡片的位置),能否让卡片正面上的数从左到右单调不降。
输入
第一行一个n。
接下来n行,每行两个数a[i],b[i]。
接下来一行一个m。
接下来m行,每行两个数c[i],d[i]。
输出
m行,每行对应一个答案。如果能成功,输出TAK,否则输出NIE。
样例输入
4
2 5
3 4
6 3
2 7
2
3 4
1 3
样例输出
NIE
TAK
题解
线段树区间合并
当然这题没有指定区间查询,所以好做很多。
设f[x][0/1][0/1]表示区间x左端点为a/b,右端点为a/b,能否组成不下降序列。
那么区间合并时判断一下中间的大小关系即可。
注意初始化叶子结点时应该只把f[x][0][0]和f[x][1][1]赋成true。
代码不忍直视。。。可能使用for循环0/1会好一些。
#include <cstdio>
#include <algorithm>
#define N 200010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
int a[N] , b[N];
bool f[N << 2][2][2];
void pushup(int l , int r , int x)
{
int mid = (l + r) >> 1 , ls = x << 1 , rs = x << 1 | 1;
f[x][0][0] = f[x][0][1] = f[x][1][0] = f[x][1][1] = 0;
if(a[mid] <= a[mid + 1]) f[x][0][0] |= f[ls][0][0] & f[rs][0][0] , f[x][0][1] |= f[ls][0][0] & f[rs][0][1] , f[x][1][0] |= f[ls][1][0] & f[rs][0][0] , f[x][1][1] |= f[ls][1][0] & f[ls][0][1];
if(a[mid] <= b[mid + 1]) f[x][0][0] |= f[ls][0][0] & f[rs][1][0] , f[x][0][1] |= f[ls][0][0] & f[rs][1][1] , f[x][1][0] |= f[ls][1][0] & f[rs][1][0] , f[x][1][1] |= f[ls][1][0] & f[ls][1][1];
if(b[mid] <= a[mid + 1]) f[x][0][0] |= f[ls][0][1] & f[rs][0][0] , f[x][0][1] |= f[ls][0][1] & f[rs][0][1] , f[x][1][0] |= f[ls][1][1] & f[rs][0][0] , f[x][1][1] |= f[ls][1][1] & f[ls][0][1];
if(b[mid] <= b[mid + 1]) f[x][0][0] |= f[ls][0][1] & f[rs][1][0] , f[x][0][1] |= f[ls][0][1] & f[rs][1][1] , f[x][1][0] |= f[ls][1][1] & f[rs][1][0] , f[x][1][1] |= f[ls][1][1] & f[ls][1][1];
}
void build(int l , int r , int x)
{
if(l == r)
{
f[x][0][0] = f[x][1][1] = 1;
return;
}
int mid = (l + r) >> 1;
build(lson) , build(rson);
pushup(l , r , x);
}
void update(int p , int c , int d , int l , int r , int x)
{
if(l == r)
{
a[p] = c , b[p] = d;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) update(p , c , d , lson);
else update(p , c , d , rson);
pushup(l , r , x);
}
int main()
{
int n , m , i , x , y , s , t;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d" , &a[i] , &b[i]);
build(1 , n , 1);
scanf("%d" , &m);
while(m -- )
{
scanf("%d%d" , &x , &y);
s = a[x] , t = b[x] , update(x , a[y] , b[y] , 1 , n , 1) , update(y , s , t , 1 , n , 1);
printf("%s\n" , f[1][0][0] | f[1][0][1] | f[1][1][0] | f[1][1][1] ? "TAK" : "NIE");
}
return 0;
}
【bzoj3526】[Poi2014]Card 线段树区间合并的更多相关文章
- BZOJ3526[Poi2014]Card——线段树合并
		
题目描述 有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i].现在,有m个熊孩子来破坏你的卡片了!第i个熊孩子会交换c[i]和d[i]两个位置上的卡片. ...
 - [BZOJ3526][Poi2014]Card 线段树
		
链接 题意:有一些卡牌,正反各有一个数,你可以任意翻转,每次操作会将两张卡牌的位置调换,你需要在每次操作后回答以现在的卡牌顺序能否通过反转形成一个单调不降的序列 题解 线段树上维护 \(f[o][0/ ...
 - POJ 3667 Hotel(线段树 区间合并)
		
Hotel 转载自:http://www.cnblogs.com/scau20110726/archive/2013/05/07/3065418.html [题目链接]Hotel [题目类型]线段树 ...
 - HDU 3911 线段树区间合并、异或取反操作
		
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3911 线段树区间合并的题目,解释一下代码中声明数组的作用: m1是区间内连续1的最长长度,m0是区间内连续 ...
 - HDU 3911 Black And White(线段树区间合并+lazy操作)
		
开始以为是水题,结果...... 给你一些只有两种颜色的石头,0为白色,1为黑色. 然后两个操作: 1 l r 将[ l , r ]内的颜色取反 0 l r 计算[ l , r ]内最长连续黑色石头的 ...
 - HYSBZ 1858 线段树 区间合并
		
//Accepted 14560 KB 1532 ms //线段树 区间合并 /* 0 a b 把[a, b]区间内的所有数全变成0 1 a b 把[a, b]区间内的所有数全变成1 2 a b 把[ ...
 - poj3667 线段树 区间合并
		
//Accepted 3728 KB 1079 ms //线段树 区间合并 #include <cstdio> #include <cstring> #include < ...
 - hdu3911 线段树 区间合并
		
//Accepted 3911 750MS 9872K //线段树 区间合并 #include <cstdio> #include <cstring> #include < ...
 - 线段树(区间合并) POJ 3667 Hotel
		
题目传送门 /* 题意:输入 1 a:询问是不是有连续长度为a的空房间,有的话住进最左边 输入 2 a b:将[a,a+b-1]的房间清空 线段树(区间合并):lsum[]统计从左端点起最长连续空房间 ...
 
随机推荐
- [学习总结] python语言学习总结 (一)
			
还是不多说话了.. 1.eval函数 用法:eval(expression, globals=None, locals=None) 解释:将字符串str当成有效的表达式来求值并返回计算结果. 就是可以 ...
 - 如何从Ubuntu 16.04 LTS升级到Ubuntu 18.04 LTS
			
可以说非常简单(假设过程顺利!!) 您只需打开Software&Update,进入"Updates"选项卡,然后从“有新版本时通知我”下拉菜单中选择“适用长期支持版”选项. ...
 - Dungeon Master的两种方法
			
Description You are trapped in a 3D dungeon and need to find the quickest way out! The dungeon is co ...
 - js倒计时小插件(兼容大部分浏览器)
			
精确到天的倒计时 <script language="JavaScript"> <!-- // (c) Henryk Gajewski var urodz= ne ...
 - Python-DDT实现接口自动化
			
Get请求参数化例子 import unittest import requests import ddt @ddt.ddt class MyTestCase(unittest.TestCase): ...
 - cocos2dx for lua 摄像机移动
			
在cocos2dx中,我们想通过移动摄像机来做一些特殊处理,比如将摄像机聚焦在某个物体上,或者摄像机颤抖,摄像机原理观察sprite回收状况等等, 都需要通过相机移动来使用. cocos2dx中的摄像 ...
 - I/O理解
			
I/O是什么 我的理解I/O就是用于读写的一个流 官方解释:I/O(英语:Input/Output),即输入/输出,通常指数据在内部存储器和外部存储器或其他周边设备之间的输入和输出. node中的io ...
 - 基础的Mapgis三维二次开发-插件式
			
最近在做一个杭州石油的项目开发一个小系统. 1.命令必须是 ICommand 的派生类 using System; using System.Collections.Generic; using Sy ...
 - Markdown中如何添加特殊符号
			
符号 说明 编码 符号 说明 编码 符号 说明 编码 " 双引号 " × 乘号 × ← 向左箭头 ← & AND符号 & ÷ 除号 ÷ ↑ 向上箭头 ↑ < ...
 - 896. Monotonic Array
			
An array is monotonic if it is either monotone increasing or monotone decreasing. An array A is mono ...