题目描述

有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i]。现在,有m个熊孩子来破坏你的卡片了!
第i个熊孩子会交换c[i]和d[i]两个位置上的卡片。
每个熊孩子捣乱后,你都需要判断,通过任意翻转卡片(把正面变为反面或把反面变成正面,但不能改变卡片的位置),能否让卡片正面上的数从左到右单调不降。

输入

第一行一个n。
接下来n行,每行两个数a[i],b[i]。
接下来一行一个m。
接下来m行,每行两个数c[i],d[i]。

输出

m行,每行对应一个答案。如果能成功,输出TAK,否则输出NIE。

样例输入

4
2 5
3 4
6 3
2 7
2
3 4
1 3

样例输出

NIE
TAK


题解

线段树区间合并

当然这题没有指定区间查询,所以好做很多。

设f[x][0/1][0/1]表示区间x左端点为a/b,右端点为a/b,能否组成不下降序列。

那么区间合并时判断一下中间的大小关系即可。

注意初始化叶子结点时应该只把f[x][0][0]和f[x][1][1]赋成true。

代码不忍直视。。。可能使用for循环0/1会好一些。

#include <cstdio>
#include <algorithm>
#define N 200010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
int a[N] , b[N];
bool f[N << 2][2][2];
void pushup(int l , int r , int x)
{
int mid = (l + r) >> 1 , ls = x << 1 , rs = x << 1 | 1;
f[x][0][0] = f[x][0][1] = f[x][1][0] = f[x][1][1] = 0;
if(a[mid] <= a[mid + 1]) f[x][0][0] |= f[ls][0][0] & f[rs][0][0] , f[x][0][1] |= f[ls][0][0] & f[rs][0][1] , f[x][1][0] |= f[ls][1][0] & f[rs][0][0] , f[x][1][1] |= f[ls][1][0] & f[ls][0][1];
if(a[mid] <= b[mid + 1]) f[x][0][0] |= f[ls][0][0] & f[rs][1][0] , f[x][0][1] |= f[ls][0][0] & f[rs][1][1] , f[x][1][0] |= f[ls][1][0] & f[rs][1][0] , f[x][1][1] |= f[ls][1][0] & f[ls][1][1];
if(b[mid] <= a[mid + 1]) f[x][0][0] |= f[ls][0][1] & f[rs][0][0] , f[x][0][1] |= f[ls][0][1] & f[rs][0][1] , f[x][1][0] |= f[ls][1][1] & f[rs][0][0] , f[x][1][1] |= f[ls][1][1] & f[ls][0][1];
if(b[mid] <= b[mid + 1]) f[x][0][0] |= f[ls][0][1] & f[rs][1][0] , f[x][0][1] |= f[ls][0][1] & f[rs][1][1] , f[x][1][0] |= f[ls][1][1] & f[rs][1][0] , f[x][1][1] |= f[ls][1][1] & f[ls][1][1];
}
void build(int l , int r , int x)
{
if(l == r)
{
f[x][0][0] = f[x][1][1] = 1;
return;
}
int mid = (l + r) >> 1;
build(lson) , build(rson);
pushup(l , r , x);
}
void update(int p , int c , int d , int l , int r , int x)
{
if(l == r)
{
a[p] = c , b[p] = d;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) update(p , c , d , lson);
else update(p , c , d , rson);
pushup(l , r , x);
}
int main()
{
int n , m , i , x , y , s , t;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d" , &a[i] , &b[i]);
build(1 , n , 1);
scanf("%d" , &m);
while(m -- )
{
scanf("%d%d" , &x , &y);
s = a[x] , t = b[x] , update(x , a[y] , b[y] , 1 , n , 1) , update(y , s , t , 1 , n , 1);
printf("%s\n" , f[1][0][0] | f[1][0][1] | f[1][1][0] | f[1][1][1] ? "TAK" : "NIE");
}
return 0;
}

【bzoj3526】[Poi2014]Card 线段树区间合并的更多相关文章

  1. BZOJ3526[Poi2014]Card——线段树合并

    题目描述 有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i].现在,有m个熊孩子来破坏你的卡片了!第i个熊孩子会交换c[i]和d[i]两个位置上的卡片. ...

  2. [BZOJ3526][Poi2014]Card 线段树

    链接 题意:有一些卡牌,正反各有一个数,你可以任意翻转,每次操作会将两张卡牌的位置调换,你需要在每次操作后回答以现在的卡牌顺序能否通过反转形成一个单调不降的序列 题解 线段树上维护 \(f[o][0/ ...

  3. POJ 3667 Hotel(线段树 区间合并)

    Hotel 转载自:http://www.cnblogs.com/scau20110726/archive/2013/05/07/3065418.html [题目链接]Hotel [题目类型]线段树 ...

  4. HDU 3911 线段树区间合并、异或取反操作

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3911 线段树区间合并的题目,解释一下代码中声明数组的作用: m1是区间内连续1的最长长度,m0是区间内连续 ...

  5. HDU 3911 Black And White(线段树区间合并+lazy操作)

    开始以为是水题,结果...... 给你一些只有两种颜色的石头,0为白色,1为黑色. 然后两个操作: 1 l r 将[ l , r ]内的颜色取反 0 l r 计算[ l , r ]内最长连续黑色石头的 ...

  6. HYSBZ 1858 线段树 区间合并

    //Accepted 14560 KB 1532 ms //线段树 区间合并 /* 0 a b 把[a, b]区间内的所有数全变成0 1 a b 把[a, b]区间内的所有数全变成1 2 a b 把[ ...

  7. poj3667 线段树 区间合并

    //Accepted 3728 KB 1079 ms //线段树 区间合并 #include <cstdio> #include <cstring> #include < ...

  8. hdu3911 线段树 区间合并

    //Accepted 3911 750MS 9872K //线段树 区间合并 #include <cstdio> #include <cstring> #include < ...

  9. 线段树(区间合并) POJ 3667 Hotel

    题目传送门 /* 题意:输入 1 a:询问是不是有连续长度为a的空房间,有的话住进最左边 输入 2 a b:将[a,a+b-1]的房间清空 线段树(区间合并):lsum[]统计从左端点起最长连续空房间 ...

随机推荐

  1. 无法启动 Diagnostic Policy Service(服务错误 1079)的解决方案

    问题 在services.msc中手动启动 Diagnostic Policy Service 时,弹出以下提示: ---------------------------服务------------- ...

  2. 字符串转换JSON 的方法

    function (sJSON) { if (window.JSON) { return window.JSON.parse(sJSON); } else { return eval('(' + sJ ...

  3. UVA 211 The Domino Effect 多米诺效应 (回溯)

    骨牌无非两种放法,横着或竖着放,每次检查最r,c最小的没访问过的点即可.如果不能放就回溯. 最外面加一层认为已经访问过的位置,方便判断. #include<bits/stdc++.h> ; ...

  4. processing制作动态山水背景

    效果代码 float theta, step; int num=5, frames = 1200; Layer[] layers = new Layer[num]; // void setup() { ...

  5. windows自定义快速启动(运行)命令

    自定义运行(windows键+R)里面命令,启动设置的程序,如图: 它的设置方法有两种: 第一种设置方法: 第1步:在任意地方创建一个文件夹(建议在D盘根目录创建),文件夹的名称可自定义没有特殊限制, ...

  6. 从输入URL到页面加载完成的过程中都发生了什么事情?

    为了便于理解,我将整个过程分为了六个问题来展开. 第一个问题:从输入 URL 到浏览器接收的过程中发生了什么事情? 从触屏到 CPU 首先是「输入 URL」,大部分人的第一反应会是键盘,不过为了与时俱 ...

  7. 强制类型转换(int)、(int&)和(int*)的区别

    我们先来看两行代码: float x=1.75,y=1.75; cout<<(int)x<<" "<<(int&)y<<en ...

  8. 初学Python02

    数据类型和变量: 1.整数  整数在Python中直接输入就好,没有特殊要求(正负整数皆可).由于计算机是二进制的,有时候会使用十六进制表示数字,0X+0-9或者a-f来表示. 2.浮点数   浮点数 ...

  9. Python爬虫二

    常见的反爬手段和解决思路 1)明确反反爬的主要思路 反反爬的主要思路就是尽可能的去模拟浏览器,浏览器在如何操作,代码中就如何去实现;浏览器先请求了地址url1,保留了cookie在本地,之后请求地址u ...

  10. ACM Changchun 2015 J. Chip Factory

    John is a manager of a CPU chip factory, the factory produces lots of chips everyday. To manage larg ...