[AGC002D] Stamp Rally (并查集+整体二分)
Description
给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的变的最大编号最小。
Input
第一行两个整数n,m,如题目所述
接下来m行,每行两个整数x,y描述一条边
接下来一个整数Q,如题目所述
接下来Q行,每行三个整数x,y,z,如题目描述
Output
Q行,每行一个正整数,如题目描述
题解:
先想一想,可以用并查集解决,但 \(n^2\) 太慢了,于是就想到了整体二分。
我先是用了一个普通的并查集,结果发现每次都要初始化一遍,T 飞了。
后来想着可以支持删除,就不能路径压缩了(还是T飞),我了解到了一个黑科技,按秩合并。
我们合并两棵树的时候,我们把树高小的挂在树高大的下面,这样就能把树高控制在log级别。
然后我们加边的时候,用栈记录合并的两个节点,分完之后,再从栈中一个个地取出来恢复原样就好了。
到最后一个点的时候我们再把这条边连上,成功AC。
对了,我之前加了这个剪枝:
if(x<y)return;
就是说如果区间里没有数就不往下了,但这会导致有些边没有连,就WA了。
CODE:
#include<iostream>
#include<stack>
#include<cstdio>
using namespace std;
int n,m,q,ans[100005];
int siz[100005],fa[100005];
struct Edge{
int x,y;
}e[100005];
struct Question{
int x,y,z,id;
}Q[100005],tmp[100005];
stack<Edge> s;
int find(int x){
if(x==fa[x])return x;
return find(fa[x]);
}
void solve(int l,int r,int x,int y){
if(l==r){
for(int i=x;i<=y;i++)ans[Q[i].id]=l;
int fx=find(e[l].x),fy=find(e[l].y);
if(siz[fx]>siz[fy])swap(fx,fy);
if(fx!=fy)fa[fx]=fy,siz[fy]+=siz[fx];
return;
}
int mid=l+r>>1;
for(int i=l;i<=mid;i++){
int fx=find(e[i].x),fy=find(e[i].y);
if(siz[fx]>siz[fy])swap(fx,fy);
if(fx!=fy){
fa[fx]=fy,siz[fy]+=siz[fx];
s.push((Edge){fx,fy});
}
}
int tot1=x-1,tot2=0;
for(int i=x,size;i<=y;i++){
int fx=find(Q[i].x),fy=find(Q[i].y);
if(fx==fy)size=siz[fx];
else size=siz[fx]+siz[fy];
if(size>=Q[i].z)Q[++tot1]=Q[i];
else tmp[++tot2]=Q[i];
}
for(int i=1;i<=tot2;i++)Q[tot1+i]=tmp[i];
while(!s.empty()){
Edge e=s.top();s.pop();
fa[e.x]=e.x,siz[e.y]-=siz[e.x];
}
solve(l,mid,x,tot1);
solve(mid+1,r,tot1+1,y);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&e[i].x,&e[i].y);
for(int i=1;i<=n;i++)fa[i]=i;
for(int i=1;i<=n;i++)siz[i]=1;
scanf("%d",&q);
for(int i=1;i<=q;i++){
scanf("%d%d%d",&Q[i].x,&Q[i].y,&Q[i].z);
Q[i].id=i;
}
solve(1,m,1,q);
for(int i=1;i<=q;i++)
printf("%d\n",ans[i]);
}
[AGC002D] Stamp Rally (并查集+整体二分)的更多相关文章
- [agc002D]Stamp Rally-[并查集+整体二分]
Description 题目大意:给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的边的最大编号最小.n, ...
- [AGC002D] Stamp Rally
确实有想到重构树,不过没有继续下去的思路. 可能是对重构树的性质不太懂. 这种题目我们可以二分答案,考虑怎么\(check\)呢,整体二分+并查集,建出重构树,找去第一个小于这个数的方点,查询他的子树 ...
- [AGC002D] Stamp Rally 整体二分+并查集
Description 给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的变的最大编号最小. Input ...
- 【做题】agc002D - Stamp Rally——整体二分的技巧
题意:给出一个无向连通图,有\(n\)个顶点,\(m\)条边.有\(q\)次询问,每次给出\(x,y,z\),最小化从\(x\)和\(y\)开始,总计访问\(z\)个顶点(一个顶点只计算一次),经过的 ...
- NOIP2010关押罪犯[并查集|二分答案+二分图染色 | 种类并查集]
题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨气值”(一个正整数值)来表示 ...
- POJ3228 并查集或二分最大流枚举答案
忘记写题意了.这题题意:给出每个地点的金矿与金库的数量,再给出边的长度.求取最大可通过边长的最小权值使每个金矿都能运输到金库里. 这题和之前做的两道二分枚举最大流答案的问法很相识,但是这里用最大流速度 ...
- 【2018百度之星初赛 B】1001并查集 1004二分 1006不等式
1001 degree 题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6380 并查集向图中加点,分别记录与初始度数最多的点 直接相连的点数.独立的点数 ...
- HDU-3081-Marriage Match II 二分图匹配+并查集 OR 二分+最大流
二分+最大流: 1 //题目大意:有编号为1~n的女生和1~n的男生配对 2 // 3 //首先输入m组,a,b表示编号为a的女生没有和编号为b的男生吵过架 4 // 5 //然后输入f组,c,d表示 ...
- NOIP 2010 关押罪犯 并查集 二分+二分图染色
题目描述: S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值" ...
随机推荐
- Android 性能篇 -- 带你领略Android内存泄漏的前世今生
基础了解 什么是内存泄漏? 内存泄漏是当程序不再使用到的内存时,释放内存失败而产生了无用的内存消耗.内存泄漏并不是指物理上的内存消失,这里的内存泄漏是指由程序分配的内存但是由于程序逻辑错误而导致程序失 ...
- 【mysql】 数据库字符集和排序规则
库的字符集影响表和字段的字符集 数据库字符集 >表的字符集 > 字段的字符集 (从前往后优先级由低到高,从左往右继承,如果表没设置字符集,继承数据库的,如果字段没设置,继承表的) 数据库的 ...
- Dungeon Master(逃脱大师)-BFS
Dungeon Master Description You are trapped in a 3D dungeon and need to find the quickest way out! Th ...
- MTCNN自己的学习理解
MTCNN 流程 经过三个网络 P-Net,R-Net,O-Net 对于P-Net: P-Net是一个全卷积层,不涉及到全连接层,所以我们的输入图像的尺寸可以是不固定的. 对于P-Net来说,我们的输 ...
- 721. Accounts Merge
https://leetcode.com/problems/accounts-merge/description/ class UnionFound { public: unordered_map&l ...
- Http状态码(了解)
一些常见的http状态码 200 - OK,服务器成功返回网页 - Standard response for successful HTTP requests. 301 - Moved Pe ...
- Docker背后的内核知识(二)
cgroups资源限制 上一节中Docker背后的内核知识(一),我们了解了Docker背后使用的资源隔离技术namespace,通过系统调用构建了一个相对隔离的shell环境,也可以称之为简单的“容 ...
- XX公司在线笔试题编程题之一
题目: #include <iostream> #include <vector> #include <string> #include <list> ...
- day20 Django Models 操作,多表,多对多
1 Django models 获取数据的三种方式: 实践: viwes def business(request): v1 = models.Business.objects.all() v2 = ...
- Android TV 开发(4)
本文来自网易云社区 作者:孙有军 最后我们再来看看好友界面,改界面本地是没有xml的,因此我们直接来看看代码: 这里将使用到数据bean,与数据源的代码也贴出来如下: public class Con ...