[AGC002D] Stamp Rally (并查集+整体二分)
Description
给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的变的最大编号最小。
Input
第一行两个整数n,m,如题目所述
接下来m行,每行两个整数x,y描述一条边
接下来一个整数Q,如题目所述
接下来Q行,每行三个整数x,y,z,如题目描述
Output
Q行,每行一个正整数,如题目描述
题解:
先想一想,可以用并查集解决,但 \(n^2\) 太慢了,于是就想到了整体二分。
我先是用了一个普通的并查集,结果发现每次都要初始化一遍,T 飞了。
后来想着可以支持删除,就不能路径压缩了(还是T飞),我了解到了一个黑科技,按秩合并。
我们合并两棵树的时候,我们把树高小的挂在树高大的下面,这样就能把树高控制在log级别。
然后我们加边的时候,用栈记录合并的两个节点,分完之后,再从栈中一个个地取出来恢复原样就好了。
到最后一个点的时候我们再把这条边连上,成功AC。
对了,我之前加了这个剪枝:
if(x<y)return;
就是说如果区间里没有数就不往下了,但这会导致有些边没有连,就WA了。
CODE:
#include<iostream>
#include<stack>
#include<cstdio>
using namespace std;
int n,m,q,ans[100005];
int siz[100005],fa[100005];
struct Edge{
int x,y;
}e[100005];
struct Question{
int x,y,z,id;
}Q[100005],tmp[100005];
stack<Edge> s;
int find(int x){
if(x==fa[x])return x;
return find(fa[x]);
}
void solve(int l,int r,int x,int y){
if(l==r){
for(int i=x;i<=y;i++)ans[Q[i].id]=l;
int fx=find(e[l].x),fy=find(e[l].y);
if(siz[fx]>siz[fy])swap(fx,fy);
if(fx!=fy)fa[fx]=fy,siz[fy]+=siz[fx];
return;
}
int mid=l+r>>1;
for(int i=l;i<=mid;i++){
int fx=find(e[i].x),fy=find(e[i].y);
if(siz[fx]>siz[fy])swap(fx,fy);
if(fx!=fy){
fa[fx]=fy,siz[fy]+=siz[fx];
s.push((Edge){fx,fy});
}
}
int tot1=x-1,tot2=0;
for(int i=x,size;i<=y;i++){
int fx=find(Q[i].x),fy=find(Q[i].y);
if(fx==fy)size=siz[fx];
else size=siz[fx]+siz[fy];
if(size>=Q[i].z)Q[++tot1]=Q[i];
else tmp[++tot2]=Q[i];
}
for(int i=1;i<=tot2;i++)Q[tot1+i]=tmp[i];
while(!s.empty()){
Edge e=s.top();s.pop();
fa[e.x]=e.x,siz[e.y]-=siz[e.x];
}
solve(l,mid,x,tot1);
solve(mid+1,r,tot1+1,y);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&e[i].x,&e[i].y);
for(int i=1;i<=n;i++)fa[i]=i;
for(int i=1;i<=n;i++)siz[i]=1;
scanf("%d",&q);
for(int i=1;i<=q;i++){
scanf("%d%d%d",&Q[i].x,&Q[i].y,&Q[i].z);
Q[i].id=i;
}
solve(1,m,1,q);
for(int i=1;i<=q;i++)
printf("%d\n",ans[i]);
}
[AGC002D] Stamp Rally (并查集+整体二分)的更多相关文章
- [agc002D]Stamp Rally-[并查集+整体二分]
Description 题目大意:给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的边的最大编号最小.n, ...
- [AGC002D] Stamp Rally
确实有想到重构树,不过没有继续下去的思路. 可能是对重构树的性质不太懂. 这种题目我们可以二分答案,考虑怎么\(check\)呢,整体二分+并查集,建出重构树,找去第一个小于这个数的方点,查询他的子树 ...
- [AGC002D] Stamp Rally 整体二分+并查集
Description 给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的变的最大编号最小. Input ...
- 【做题】agc002D - Stamp Rally——整体二分的技巧
题意:给出一个无向连通图,有\(n\)个顶点,\(m\)条边.有\(q\)次询问,每次给出\(x,y,z\),最小化从\(x\)和\(y\)开始,总计访问\(z\)个顶点(一个顶点只计算一次),经过的 ...
- NOIP2010关押罪犯[并查集|二分答案+二分图染色 | 种类并查集]
题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨气值”(一个正整数值)来表示 ...
- POJ3228 并查集或二分最大流枚举答案
忘记写题意了.这题题意:给出每个地点的金矿与金库的数量,再给出边的长度.求取最大可通过边长的最小权值使每个金矿都能运输到金库里. 这题和之前做的两道二分枚举最大流答案的问法很相识,但是这里用最大流速度 ...
- 【2018百度之星初赛 B】1001并查集 1004二分 1006不等式
1001 degree 题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6380 并查集向图中加点,分别记录与初始度数最多的点 直接相连的点数.独立的点数 ...
- HDU-3081-Marriage Match II 二分图匹配+并查集 OR 二分+最大流
二分+最大流: 1 //题目大意:有编号为1~n的女生和1~n的男生配对 2 // 3 //首先输入m组,a,b表示编号为a的女生没有和编号为b的男生吵过架 4 // 5 //然后输入f组,c,d表示 ...
- NOIP 2010 关押罪犯 并查集 二分+二分图染色
题目描述: S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值" ...
随机推荐
- PAT 乙级 1024
题目 题目地址:PAT 乙级 1024 题解 模拟题,重点需要考虑到各种不同情况:简单来说一下: 因为输入格式固定,所以把不同的部分分别存储和处理可以在很大程度上简化运算:其中需要考虑最多的就是小数部 ...
- 十五、MySQL DELETE 语句
MySQL DELETE 语句 你可以使用 SQL 的 DELETE FROM 命令来删除 MySQL 数据表中的记录. 你可以在 mysql> 命令提示符或 PHP 脚本中执行该命令. 语法 ...
- 关于使用Java开发Mis系统
如何使用Java开发一个小型的信息管理系统,首先我们应该知道要使用什么样的方法. 1.Java基础 2.JSP+Servlet+JavaBean JSP是服务器端的编程语言,见得比较多的是在一些网站上 ...
- 关于js中onclick字符串传参问题(html="")
规则: 外变是“”,里面就是‘’外边是‘’,里边就是“” 示例: var a="111"; var html="<a onclick='selecthoods( ...
- Assignment HDU - 2853(二分图匹配 KM 新边旧边)
传送门: Assignment HDU - 2853 题意:题意直接那松神的题意了.给了你n个公司和m个任务,然后给你了每个公司处理每个任务的效率.然后他已经给你了每个公司的分配方案,让你求出最多能增 ...
- 遗传算法 | Java版GA_TSP (2)
嗯哼,上一篇博客中用Java实现了遗传算法求解TSP(Java版GA_TSP(我的第一个Java程序)),但明显求解效果不太好,都没太好意思贴出具体的结果,今天捣腾了下,对算法做了一些小改进,求解效果 ...
- P1217 [USACO1.5]回文质数 Prime Palindromes(求100000000内的回文素数)
P1217 [USACO1.5]回文质数 Prime Palindromes 题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找 ...
- jQuery+Asp.net 实现简单的下拉加载更多功能
原来做过的商城项目现在需要增加下拉加载的功能,简单的实现了一下.大概可以整理一下思路跟代码. 把需要下拉加载的内容进行转为JSON处理存在当前页面: <script type="tex ...
- cacheData
<%@ page language="java" import="java.util.*,com.fiberhome.bcs.appprocess.common.u ...
- 通过js date对象获取各种开始结束日期的示例
有时候做一些任务计划的功能时候,需要提供一个开始时间或者结束时间,比如本周结束,本月结束,今天结束等等,因此,我参考网上的资料把相关的实现为一个项目: gitee: https://gitee.com ...