【BZOJ1467/2480】Pku3243 clever Y/Spoj3105 Mod

Description

已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x。

Input

    每个测试文件中最多包含100组测试数据。
    每组数据中,每行包含3个正整数a,p,b。
    当a=p=b=0时,表示测试数据读入完全。

Output

    对于每组数据,输出一行。
    如果无解,输出“No Solution”(不含引号),否则输出最小自然数解。

Sample Input

5 58 33
2 4 3
0 0 0

Sample Output

9
No Solution

HINT

100%的数据,a,p,b≤1e9。

题解:EXBSGS

因为A和C不互质,所以我们令A,B,C同时除以gcd(A,C),得到的C'可能与A还不互质,所以我们再除上gcd(A,C'),直到A,C互质。

此时得到方程$A^{x-k}*{A^k\over g_1*g_2...g_k}=B'(mod C')$

将${A^k\over g_1*g_2...g_k}$除过去,然后套用BSGS即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <cmath>
using namespace std;
typedef long long ll;
map<int,int> mp;
int pm(int a,int b,int c)
{
int ret=1;
while(b)
{
if(b&1) ret=(ll)ret*a%c;
a=(ll)a*a%c,b>>=1;
}
return ret;
}
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
int BSGS(int a,int b,int c,int d)
{
int x,y,i;
mp.clear();
int M=ceil(sqrt(c));
for(x=b,i=0;i<=M;i++,x=(ll)x*a%c) mp[x]=i;
for(y=d,x=pm(a,M,c),i=1;i<=M;i++)
{
y=(ll)y*x%c;
int tmp=mp[y];
if(tmp) return (ll)i*M-tmp;
}
return -1;
}
void work(int a,int b,int c)
{
int A=1,k=0;
for(int i=0;(1<<i)<=c;i++)
{
if(pm(a,i,c)==b)
{
printf("%d\n",i);
return ;
}
}
while(1)
{
int g=gcd(a,c);
if(g==1) break;
if(b%g!=0)
{
printf("No Solution\n");
return ;
}
b/=g,c/=g,A=((ll)A*a/g)%c,k++;
}
int tmp=BSGS(a,b,c,A);
if(tmp==-1) printf("No Solution\n");
else printf("%d\n",tmp+k);
}
int main()
{
int a,b,c;
while(1)
{
scanf("%d%d%d",&a,&c,&b);
if(!a&&!b&&!c) return 0;
if(!a&&!b) printf("1\n");
else a%=c,b%=c,work(a,b,c);
}
}

【BZOJ1467/2480】Pku3243 clever Y/Spoj3105 Mod EXBSGS的更多相关文章

  1. 【EX_BSGS】BZOJ1467 Pku3243 clever Y

    1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 425  Solved: 238[Submit][Status ...

  2. bzoj1467 Pku3243 clever Y

    1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 313  Solved: 181[Submit][Status ...

  3. bzoj 1467: Pku3243 clever Y 扩展BSGS

    1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 小 ...

  4. poj 3243 Clever Y && 1467: Pku3243 clever Y【扩展BSGS】

    扩展BSGS的板子 对于gcd(a,p)>1的情况 即扩展BSGS 把式子变成等式的形式: \( a^x+yp=b \) 设 \( g=gcd(a,p) \) 那么两边同时除以g就会变成: \( ...

  5. 【POJ】3243 Clever Y

    http://poj.org/problem?id=3243 题意:求$a^y \equiv b \pmod{p}$最小的$y$.(0<=x, y, p<=10^9) #include & ...

  6. 【数论】【ex-BSGS】poj3243 Clever Y

    用于求解高次同余方程A^x≡B(mod C),其中C不一定是素数. http://blog.csdn.net/tsaid/article/details/7354716 这篇题解写得最好. 那啥,这题 ...

  7. 【iOS开发】iOS CGRectGetMaxX/Y 使用

    在iOS的界面布局中我们可以使用CGRectGetMaxX 这个方法来方便的获取当前控件的x坐标值+宽度的数值,这样便可以方便布局. 同理CGRectGetMaxY是获取y坐标值+控件高度的值,当然这 ...

  8. 【小知识】比较 x^y 和 y^x 的大小

    往前翻几个编号相邻的题目翻到了这么一道题,感觉很好奇就做了一下 (upd:我下午问了下出题人做法,他就把题隐藏了……这不太友好啊……所以我补一下题意:) 题意 给你两个整数 $x$ 和 $y$,求 $ ...

  9. 【POJ 2480】Longge's problem(欧拉函数)

    题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n) ...

随机推荐

  1. bzoj 2791 [Poi2012]Rendezvous 基环森林

    题目大意 给定一个n个顶点的有向图,每个顶点有且仅有一条出边. 对于顶点i,记它的出边为(i, a[i]). 再给出q组询问,每组询问由两个顶点a.b组成,要求输出满足下面条件的x.y: 从顶点a沿着 ...

  2. hust 1605 - Gene recombination(bfs+字典树)

    1605 - Gene recombination Time Limit: 2s Memory Limit: 64MB Submissions: 264 Solved: 46 DESCRIPTION ...

  3. 第一次用写一个3d轮播

    2016-07-11gallery  3d html <!doctype html><html lang="en"><head> <met ...

  4. mfc对话框嵌入Flash的交互(转)

    原文转自 http://blog.csdn.net/yacper/article/details/5021081 研究Flash嵌入游戏中的可行性....... 渲染问题已解决 事件响应已解决 下面是 ...

  5. WebRTC VoiceEngine综合应用示例(一)——基本结构分析(转)

    把自己这两天学习VoiceEngine的成果分享出来,供大家参考,有什么问题也欢迎大家指出,一起学习一起进步. 本文将对VoiceEngine的基本结构做一个分析,分析的方法是自底向上的:看一个音频编 ...

  6. 汇编指令详解--as手册

    https://sourceware.org/binutils/docs/as/ Table of Contents 1 Overview 1.1 Structure of this Manual 1 ...

  7. C语言中的bool类型

    C99中提供了一个头文件 <stdbool.h> 定义了bool代表_Bool,true代表1,false代表0.只要导入 stdbool.h ,就能非常方便的操作布尔类型了. 代码如下: ...

  8. Swoole 简单学习

    Swoole 百度百科:是一个PHP扩展,扩展不是为了提升网站的性能,是为了提升网站的开发效率.最少的性能损耗,换取最大 的开发效率.利用Swoole扩展,开发一个复杂的Web功能,可以在很短的时间内 ...

  9. LightOJ 1140: How Many Zeroes? (数位DP)

    当前数位DP还不理解的点: 1:出口用i==0的方式 2:如何省略状态d(就是枚举下一个数的那个状态.当然枚举还是要的,怎么把空间省了) 总结: 1:此类DP,考虑转移的时候,应当同时考虑查询时候的情 ...

  10. LeetCode OJ--Subsets II

    https://oj.leetcode.com/problems/subsets-ii/ 求一个集合的子集,但集合中有重复元素. 求子集的问题,对应着数的二进制,相当于对二进制的一个遍历. #incl ...