How to Train a GAN? Tips and tricks to make GANs work

转自:https://github.com/soumith/ganhacks

While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train them and make them stable day to day.

Here are a summary of some of the tricks.

Here's a link to the authors of this document

If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

1. Normalize the inputs

  • normalize the images between -1 and 1
  • Tanh as the last layer of the generator output

2: A modified loss function

In GAN papers, the loss function to optimize G is min (log 1-D), but in practice folks practically use max log D

  • because the first formulation has vanishing gradients early on
  • Goodfellow et. al (2014)

In practice, works well:

  • Flip labels when training generator: real = fake, fake = real

3: Use a spherical Z

  • Dont sample from a Uniform distribution

  • Sample from a gaussian distribution

  • When doing interpolations, do the interpolation via a great circle, rather than a straight line from point A to point B
  • Tom White's Sampling Generative Networks has more details

4: BatchNorm

  • Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all generated images.
  • when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard deviation).

5: Avoid Sparse Gradients: ReLU, MaxPool

  • the stability of the GAN game suffers if you have sparse gradients
  • LeakyReLU = good (in both G and D)
  • For Downsampling, use: Average Pooling, Conv2d + stride
  • For Upsampling, use: PixelShuffle, ConvTranspose2d + stride

6: Use Soft and Noisy Labels

  • Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for example).

    • Salimans et. al. 2016
  • make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator

7: DCGAN / Hybrid Models

  • Use DCGAN when you can. It works!
  • if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN

8: Use stability tricks from RL

  • Experience Replay

    • Keep a replay buffer of past generations and occassionally show them
    • Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
  • All stability tricks that work for deep deterministic policy gradients
  • See Pfau & Vinyals (2016)

9: Use the ADAM Optimizer

  • optim.Adam rules!

    • See Radford et. al. 2015
  • Use SGD for discriminator and ADAM for generator

10: Track failures early

  • D loss goes to 0: failure mode
  • check norms of gradients: if they are over 100 things are screwing up
  • when things are working, D loss has low variance and goes down over time vs having huge variance and spiking
  • if loss of generator steadily decreases, then it's fooling D with garbage (says martin)

11: Dont balance loss via statistics (unless you have a good reason to)

  • Dont try to find a (number of G / number of D) schedule to uncollapse training
  • It's hard and we've all tried it.
  • If you do try it, have a principled approach to it, rather than intuition

For example

while lossD > A:
train D
while lossG > B:
train G

12: If you have labels, use them

  • if you have labels available, training the discriminator to also classify the samples: auxillary GANs

13: Add noise to inputs, decay over time

14: [notsure] Train discriminator more (sometimes)

  • especially when you have noise
  • hard to find a schedule of number of D iterations vs G iterations

15: [notsure] Batch Discrimination

  • Mixed results

16: Discrete variables in Conditional GANs

  • Use an Embedding layer
  • Add as additional channels to images
  • Keep embedding dimensionality low and upsample to match image channel size

Authors

  • Soumith Chintala
  • Emily Denton
  • Martin Arjovsky
  • Michael Mathieu

(转) How to Train a GAN? Tips and tricks to make GANs work的更多相关文章

  1. Matlab tips and tricks

    matlab tips and tricks and ... page overview: I created this page as a vectorization helper but it g ...

  2. LoadRunner AJAX TruClient协议Tips and Tricks

    LoadRunner AJAX TruClient协议Tips and Trickshttp://automationqa.com/forum.php?mod=viewthread&tid=2 ...

  3. Android Studio tips and tricks 翻译学习

    Android Studio tips and tricks 翻译 这里是原文的链接. 正文: 如果你对Android Studio和IntelliJ不熟悉,本页提供了一些建议,让你可以从最常见的任务 ...

  4. Tips and Tricks for Debugging in chrome

    Tips and Tricks for Debugging in chrome Pretty print On sources panel ,clicking on the {} on the bot ...

  5. [转]Tips——Chrome DevTools - 25 Tips and Tricks

    Chrome DevTools - 25 Tips and Tricks 原文地址:https://www.keycdn.com/blog/chrome-devtools 如何打开? 1.从浏览器菜单 ...

  6. Nginx and PHP-FPM Configuration and Optimizing Tips and Tricks

    原文链接:http://www.if-not-true-then-false.com/2011/nginx-and-php-fpm-configuration-and-optimizing-tips- ...

  7. 10 Essential TypeScript Tips And Tricks For Angular Devs

    原文: https://www.sitepoint.com/10-essential-typescript-tips-tricks-angular/ ------------------------- ...

  8. WWDC笔记:2011 Session 125 UITableView Changes, Tips and Tricks

    What’s New Automatic Dimensions - (CGFloat)tableView:(UITableView *)tableView heightForHeaderInSect ...

  9. C++ Tips and Tricks

    整理了下在C++工程代码中遇到的技巧与建议. 0x00 巧用宏定义. 经常看见程序员用 enum 值,打印调试信息的时候又想打印数字对应的字符意思.见过有人写这样的代码 if(today == MON ...

随机推荐

  1. C#类的继承,方法的重载和覆写

    在网易云课堂上看到唐大仕老师讲解的关于类的继承.方法的重载和覆写的一段代码,注释比较详细,在此记下以加深理解. 小总结: 1.类的继承:允许的实例化方式:Student t=new Student() ...

  2. 利用QJSON将FDQuery转成JSON串

    服务器要支持Http协议,打算采用Http+JSON的方式来交换数据.一开始考虑使用superobject,因为以前使用比较多,比较熟悉. 代码如下: class function FDQueryTo ...

  3. tomcat+nginx简单实现负载均衡

    1.环境准备 在前面的博客中我已经安装好nginx和一台tomcat了.现在就在加一台tomcat tomcat1:  /apps/tomcat/tomcat1/apache-tomcat-7.0.6 ...

  4. VS2010里, using System.Data.OracleClient; 不可用

    当我试图去引用System.Data.OracleClient 这个命名空间时,VS 显示不存在 但是在对象浏览器里却可以找到这个命名空间及里边的对象 另外好像也没有区分清楚 using 和Refer ...

  5. PHP往mysql数据库中写入中文失败

    该类问题解决办法就是 在建立数据库连接之后,将该连接的编码方式改为中文. 代码如下: $linkID=@mysql_connect("localhost","root&q ...

  6. iOS交互WebService(cxf框架)

    公司后台java用的cxf框架,说是iOS.Android.web客户端都可以通用,但是我还是第一次遇到,所以做的时候遇到了不小的坑.下面总结下我开发中遇到的问题以及解决方案: 首先,后台提供了一份接 ...

  7. GridView导出Excel(中文乱码)

    public void OUTEXCEL(string items,string where) { DataSet ds = new StudentBLL().GetTable(items,where ...

  8. iOS UITextField限制输入数字

    有时候项目中要求文本框中只能输入数字,如:价格.公里数.费用等等,一般的文本框不限制输入的格式,这时候只能强制限制输入框的输入格式了,代码如下: #import "ViewControlle ...

  9. css3 filter属性在项目中的应用

    css3 属性filter应用在项目里. 语法: <filter>: 要使用的滤镜效果.多个滤镜之间用空格隔开. 设置或检索对象所应用的滤镜效果. 最常用的滤镜效果是不透明效果,如果要实现 ...

  10. 项目里的jquery.min.js错误

    项目里的jquery.min.js报一系列 - Missing semicolon - Missing semicolon - Missing semicolon - Missing semicolo ...