(转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work
转自:https://github.com/soumith/ganhacks
While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train them and make them stable day to day.
Here are a summary of some of the tricks.
Here's a link to the authors of this document
If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.
1. Normalize the inputs
- normalize the images between -1 and 1
- Tanh as the last layer of the generator output
2: A modified loss function
In GAN papers, the loss function to optimize G is min (log 1-D), but in practice folks practically use max log D
- because the first formulation has vanishing gradients early on
- Goodfellow et. al (2014)
In practice, works well:
- Flip labels when training generator: real = fake, fake = real
3: Use a spherical Z
- Dont sample from a Uniform distribution

- Sample from a gaussian distribution

- When doing interpolations, do the interpolation via a great circle, rather than a straight line from point A to point B
- Tom White's Sampling Generative Networks has more details
4: BatchNorm
- Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all generated images.
- when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard deviation).

5: Avoid Sparse Gradients: ReLU, MaxPool
- the stability of the GAN game suffers if you have sparse gradients
- LeakyReLU = good (in both G and D)
- For Downsampling, use: Average Pooling, Conv2d + stride
- For Upsampling, use: PixelShuffle, ConvTranspose2d + stride
- PixelShuffle: https://arxiv.org/abs/1609.05158
6: Use Soft and Noisy Labels
- Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for example).
- Salimans et. al. 2016
- make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator
7: DCGAN / Hybrid Models
- Use DCGAN when you can. It works!
- if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN
8: Use stability tricks from RL
- Experience Replay
- Keep a replay buffer of past generations and occassionally show them
- Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
- All stability tricks that work for deep deterministic policy gradients
- See Pfau & Vinyals (2016)
9: Use the ADAM Optimizer
- optim.Adam rules!
- See Radford et. al. 2015
- Use SGD for discriminator and ADAM for generator
10: Track failures early
- D loss goes to 0: failure mode
- check norms of gradients: if they are over 100 things are screwing up
- when things are working, D loss has low variance and goes down over time vs having huge variance and spiking
- if loss of generator steadily decreases, then it's fooling D with garbage (says martin)
11: Dont balance loss via statistics (unless you have a good reason to)
- Dont try to find a (number of G / number of D) schedule to uncollapse training
- It's hard and we've all tried it.
- If you do try it, have a principled approach to it, rather than intuition
For example
while lossD > A:
train D
while lossG > B:
train G
12: If you have labels, use them
- if you have labels available, training the discriminator to also classify the samples: auxillary GANs
13: Add noise to inputs, decay over time
- Add some artificial noise to inputs to D (Arjovsky et. al., Huszar, 2016)
- adding gaussian noise to every layer of generator (Zhao et. al. EBGAN)
- Improved GANs: OpenAI code also has it (commented out)
14: [notsure] Train discriminator more (sometimes)
- especially when you have noise
- hard to find a schedule of number of D iterations vs G iterations
15: [notsure] Batch Discrimination
- Mixed results
16: Discrete variables in Conditional GANs
- Use an Embedding layer
- Add as additional channels to images
- Keep embedding dimensionality low and upsample to match image channel size
Authors
- Soumith Chintala
- Emily Denton
- Martin Arjovsky
- Michael Mathieu
(转) How to Train a GAN? Tips and tricks to make GANs work的更多相关文章
- Matlab tips and tricks
matlab tips and tricks and ... page overview: I created this page as a vectorization helper but it g ...
- LoadRunner AJAX TruClient协议Tips and Tricks
LoadRunner AJAX TruClient协议Tips and Trickshttp://automationqa.com/forum.php?mod=viewthread&tid=2 ...
- Android Studio tips and tricks 翻译学习
Android Studio tips and tricks 翻译 这里是原文的链接. 正文: 如果你对Android Studio和IntelliJ不熟悉,本页提供了一些建议,让你可以从最常见的任务 ...
- Tips and Tricks for Debugging in chrome
Tips and Tricks for Debugging in chrome Pretty print On sources panel ,clicking on the {} on the bot ...
- [转]Tips——Chrome DevTools - 25 Tips and Tricks
Chrome DevTools - 25 Tips and Tricks 原文地址:https://www.keycdn.com/blog/chrome-devtools 如何打开? 1.从浏览器菜单 ...
- Nginx and PHP-FPM Configuration and Optimizing Tips and Tricks
原文链接:http://www.if-not-true-then-false.com/2011/nginx-and-php-fpm-configuration-and-optimizing-tips- ...
- 10 Essential TypeScript Tips And Tricks For Angular Devs
原文: https://www.sitepoint.com/10-essential-typescript-tips-tricks-angular/ ------------------------- ...
- WWDC笔记:2011 Session 125 UITableView Changes, Tips and Tricks
What’s New Automatic Dimensions - (CGFloat)tableView:(UITableView *)tableView heightForHeaderInSect ...
- C++ Tips and Tricks
整理了下在C++工程代码中遇到的技巧与建议. 0x00 巧用宏定义. 经常看见程序员用 enum 值,打印调试信息的时候又想打印数字对应的字符意思.见过有人写这样的代码 if(today == MON ...
随机推荐
- B2C电子商务基础系统架构解析(转载)
系统的开发与演化,前台严格follow消费者的购买流程,后台则盯牢订单流转,牢牢抓住这两条主线,才能高屋建瓴的看清B2C的逻辑链和数据流,更深刻的规划功能模块,从而更有效支撑实际业务的流转. 前台 前 ...
- 2014年6月份第4周51Aspx源码发布详情
通用医院会员管理系统源码 2014-6-23 [VS2010]功能介绍:本系统共包括以下模块:会员开卡管理.会员充值管理.会员消费管理.会员病例管理.客户预约管理.系统信息管理(门诊管理.卡类型管理 ...
- 不管你以后写不写JS,都应该学会这种思考方式
昨天在网上看到了一篇文章说程序员写不过35这种说法,但事实上,确实并不能每个人都像我一样,在写JS中找到乐趣,就乐意写这东西直到50岁眼瞎为止. 那肯定有人要问,也许我不仅写JS写不到35,可能我连3 ...
- 统计字符串”aaaabbbccccddfgh”中字母个数以及统计最多字母数
function count(){ var str="shhkfahkahsadhadskhdskdha"; var obj={}; for(var i=0;i<str.le ...
- 搭建java web开发环境、使用eclipse编写第一个java web程序
开发工具:eclipse-jee-juno-SR2-win32-x86_64(请自行官网下载) 使用服务器:apache-tomcat-7.0.35-windows-x64(请自行官网下载) 打开 e ...
- DIV+CSS布局网站基本框架
html代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www. ...
- 深入理解css系列:meta标签
积累太少,时间管理技巧欠缺,所以导致了博客更新的速度迟缓.学习中成长,成长中学习.加油吧!最近在做h5的项目,对于meta标签层出不穷的各式属性值有点头晕,所以查资料整理了下. 关键字:meta na ...
- check_pkg函数解析
函数位置,conf/core,具体代码如下: check_pkg() { # Usage: check_pkg <command> <package> # It means: ...
- HttpContext.Current.User is null after installing .NET Framework 4.5
故障原因:从framework4.0到framework4.5的升级过程中,原有的form认证方式发生了变化,所以不再支持User.Identity.Name原有存储模式(基于cookie),要恢复这 ...
- android 中theme和style的语法相关
1.theme和style都是一组属性的集合,用于定义文本.颜色.大小等显示风格.他们都是资源,可以用android系统级别的一些默认的风格和主题资源,你也可以自定义你自己的主题和风格资源. 2.自定 ...