(转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work
转自:https://github.com/soumith/ganhacks
While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train them and make them stable day to day.
Here are a summary of some of the tricks.
Here's a link to the authors of this document
If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.
1. Normalize the inputs
- normalize the images between -1 and 1
- Tanh as the last layer of the generator output
2: A modified loss function
In GAN papers, the loss function to optimize G is min (log 1-D), but in practice folks practically use max log D
- because the first formulation has vanishing gradients early on
- Goodfellow et. al (2014)
In practice, works well:
- Flip labels when training generator: real = fake, fake = real
3: Use a spherical Z
- Dont sample from a Uniform distribution

- Sample from a gaussian distribution

- When doing interpolations, do the interpolation via a great circle, rather than a straight line from point A to point B
- Tom White's Sampling Generative Networks has more details
4: BatchNorm
- Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all generated images.
- when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard deviation).

5: Avoid Sparse Gradients: ReLU, MaxPool
- the stability of the GAN game suffers if you have sparse gradients
- LeakyReLU = good (in both G and D)
- For Downsampling, use: Average Pooling, Conv2d + stride
- For Upsampling, use: PixelShuffle, ConvTranspose2d + stride
- PixelShuffle: https://arxiv.org/abs/1609.05158
6: Use Soft and Noisy Labels
- Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for example).
- Salimans et. al. 2016
- make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator
7: DCGAN / Hybrid Models
- Use DCGAN when you can. It works!
- if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN
8: Use stability tricks from RL
- Experience Replay
- Keep a replay buffer of past generations and occassionally show them
- Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
- All stability tricks that work for deep deterministic policy gradients
- See Pfau & Vinyals (2016)
9: Use the ADAM Optimizer
- optim.Adam rules!
- See Radford et. al. 2015
- Use SGD for discriminator and ADAM for generator
10: Track failures early
- D loss goes to 0: failure mode
- check norms of gradients: if they are over 100 things are screwing up
- when things are working, D loss has low variance and goes down over time vs having huge variance and spiking
- if loss of generator steadily decreases, then it's fooling D with garbage (says martin)
11: Dont balance loss via statistics (unless you have a good reason to)
- Dont try to find a (number of G / number of D) schedule to uncollapse training
- It's hard and we've all tried it.
- If you do try it, have a principled approach to it, rather than intuition
For example
while lossD > A:
train D
while lossG > B:
train G
12: If you have labels, use them
- if you have labels available, training the discriminator to also classify the samples: auxillary GANs
13: Add noise to inputs, decay over time
- Add some artificial noise to inputs to D (Arjovsky et. al., Huszar, 2016)
- adding gaussian noise to every layer of generator (Zhao et. al. EBGAN)
- Improved GANs: OpenAI code also has it (commented out)
14: [notsure] Train discriminator more (sometimes)
- especially when you have noise
- hard to find a schedule of number of D iterations vs G iterations
15: [notsure] Batch Discrimination
- Mixed results
16: Discrete variables in Conditional GANs
- Use an Embedding layer
- Add as additional channels to images
- Keep embedding dimensionality low and upsample to match image channel size
Authors
- Soumith Chintala
- Emily Denton
- Martin Arjovsky
- Michael Mathieu
(转) How to Train a GAN? Tips and tricks to make GANs work的更多相关文章
- Matlab tips and tricks
matlab tips and tricks and ... page overview: I created this page as a vectorization helper but it g ...
- LoadRunner AJAX TruClient协议Tips and Tricks
LoadRunner AJAX TruClient协议Tips and Trickshttp://automationqa.com/forum.php?mod=viewthread&tid=2 ...
- Android Studio tips and tricks 翻译学习
Android Studio tips and tricks 翻译 这里是原文的链接. 正文: 如果你对Android Studio和IntelliJ不熟悉,本页提供了一些建议,让你可以从最常见的任务 ...
- Tips and Tricks for Debugging in chrome
Tips and Tricks for Debugging in chrome Pretty print On sources panel ,clicking on the {} on the bot ...
- [转]Tips——Chrome DevTools - 25 Tips and Tricks
Chrome DevTools - 25 Tips and Tricks 原文地址:https://www.keycdn.com/blog/chrome-devtools 如何打开? 1.从浏览器菜单 ...
- Nginx and PHP-FPM Configuration and Optimizing Tips and Tricks
原文链接:http://www.if-not-true-then-false.com/2011/nginx-and-php-fpm-configuration-and-optimizing-tips- ...
- 10 Essential TypeScript Tips And Tricks For Angular Devs
原文: https://www.sitepoint.com/10-essential-typescript-tips-tricks-angular/ ------------------------- ...
- WWDC笔记:2011 Session 125 UITableView Changes, Tips and Tricks
What’s New Automatic Dimensions - (CGFloat)tableView:(UITableView *)tableView heightForHeaderInSect ...
- C++ Tips and Tricks
整理了下在C++工程代码中遇到的技巧与建议. 0x00 巧用宏定义. 经常看见程序员用 enum 值,打印调试信息的时候又想打印数字对应的字符意思.见过有人写这样的代码 if(today == MON ...
随机推荐
- C#类的继承,方法的重载和覆写
在网易云课堂上看到唐大仕老师讲解的关于类的继承.方法的重载和覆写的一段代码,注释比较详细,在此记下以加深理解. 小总结: 1.类的继承:允许的实例化方式:Student t=new Student() ...
- 利用QJSON将FDQuery转成JSON串
服务器要支持Http协议,打算采用Http+JSON的方式来交换数据.一开始考虑使用superobject,因为以前使用比较多,比较熟悉. 代码如下: class function FDQueryTo ...
- tomcat+nginx简单实现负载均衡
1.环境准备 在前面的博客中我已经安装好nginx和一台tomcat了.现在就在加一台tomcat tomcat1: /apps/tomcat/tomcat1/apache-tomcat-7.0.6 ...
- VS2010里, using System.Data.OracleClient; 不可用
当我试图去引用System.Data.OracleClient 这个命名空间时,VS 显示不存在 但是在对象浏览器里却可以找到这个命名空间及里边的对象 另外好像也没有区分清楚 using 和Refer ...
- PHP往mysql数据库中写入中文失败
该类问题解决办法就是 在建立数据库连接之后,将该连接的编码方式改为中文. 代码如下: $linkID=@mysql_connect("localhost","root&q ...
- iOS交互WebService(cxf框架)
公司后台java用的cxf框架,说是iOS.Android.web客户端都可以通用,但是我还是第一次遇到,所以做的时候遇到了不小的坑.下面总结下我开发中遇到的问题以及解决方案: 首先,后台提供了一份接 ...
- GridView导出Excel(中文乱码)
public void OUTEXCEL(string items,string where) { DataSet ds = new StudentBLL().GetTable(items,where ...
- iOS UITextField限制输入数字
有时候项目中要求文本框中只能输入数字,如:价格.公里数.费用等等,一般的文本框不限制输入的格式,这时候只能强制限制输入框的输入格式了,代码如下: #import "ViewControlle ...
- css3 filter属性在项目中的应用
css3 属性filter应用在项目里. 语法: <filter>: 要使用的滤镜效果.多个滤镜之间用空格隔开. 设置或检索对象所应用的滤镜效果. 最常用的滤镜效果是不透明效果,如果要实现 ...
- 项目里的jquery.min.js错误
项目里的jquery.min.js报一系列 - Missing semicolon - Missing semicolon - Missing semicolon - Missing semicolo ...