原题链接在这里:https://leetcode.com/problems/find-the-celebrity/

题目:

Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist one celebrity. The definition of a celebrity is that all the other n - 1people know him/her but he/she does not know any of them.

Now you want to find out who the celebrity is or verify that there is not one. The only thing you are allowed to do is to ask questions like: "Hi, A. Do you know B?" to get information of whether A knows B. You need to find out the celebrity (or verify there is not one) by asking as few questions as possible (in the asymptotic sense).

You are given a helper function bool knows(a, b) which tells you whether A knows B. Implement a function int findCelebrity(n), your function should minimize the number of calls to knows.

Note: There will be exactly one celebrity if he/she is in the party. Return the celebrity's label if there is a celebrity in the party. If there is no celebrity, return -1.

题解:

先找一个candidate. 若是celebrity 认识 i, 说明i 有可能是celebrity. 就更新i为candidate.

找到这个candidate 后 再扫一遍来判定这是不是一个合格的candidate, 若是出现candidate认识i 或者 i不认识candidate的情况, 说明这不是一个合格的candidate.

Time Complexity: O(n). Space: O(1).

AC Java:

 /* The knows API is defined in the parent class Relation.
boolean knows(int a, int b); */ public class Solution extends Relation {
public int findCelebrity(int n) {
if(n <= 1){
return -1;
}
int celebrity = 0;
//找一个candidate
for(int i = 0; i<n; i++){
if(knows(celebrity, i)){
celebrity = i;
}
}
for(int i = 0; i<n; i++){
//若是出现candidate认识i 或者 i不认识candidate的情况, 说明这不是一个合格的candidate
if(i != celebrity && (knows(celebrity, i) || !knows(i, celebrity))){
return -1;
}
}
return celebrity;
}
}

类似Find the Town Judge.

LeetCode Find the Celebrity的更多相关文章

  1. [LeetCode] Find the Celebrity 寻找名人

    Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...

  2. LeetCode 277. Find the Celebrity (找到明星)$

    Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...

  3. 名人问题 算法解析与Python 实现 O(n) 复杂度 (以Leetcode 277. Find the Celebrity为例)

    1. 题目描述 Problem Description Leetcode 277. Find the Celebrity Suppose you are at a party with n peopl ...

  4. [LeetCode] 277. Find the Celebrity 寻找名人

    Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...

  5. [LeetCode#277] Find the Celebrity

    Problem: Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there ma ...

  6. [leetcode]277. Find the Celebrity 找名人

    Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...

  7. 【LeetCode】277. Find the Celebrity 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力 日期 题目地址:https://leetcode ...

  8. [leetcode]277. Find the Celebrity谁是名人

    Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...

  9. LeetCode All in One 题目讲解汇总(持续更新中...)

    终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...

随机推荐

  1. iOS,监听tableVIew的偏移量

    1. 添加监听 [self.tableView addObserver:self forKeyPath:@"contentOffset" options:NSKeyValueObs ...

  2. 3.Java异常进阶

    3.JAVA异常进阶 1.Run函数中抛出的异常 1.run函数不会抛出异常 2.run函数的异常会交给UncaughtExceptionhandler处理 3.默认的UncaughtExceptio ...

  3. WinForm/MIS项目开发之中按钮级权限实践

    一.前言 AgileEAS.NET SOA 中间件平台是一款基于基于敏捷并行开发思想和Microsoft .Net构件(组件)开发技术而构建的一个快速开发应用平台.用于帮助中小型软件企业建立一条适合市 ...

  4. 给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k+1)整除。

    题目描述: 给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k+1)整除. 输入: 两个整数n(2<=n<=1000),a(2<=a<=1000) 输出: 一个整数. ...

  5. 搭建高可用MongoDB集群(一):配置MongoDB

    在大数据的时代,传统的关系型数据库要能更高的服务必须要解决高并发读写.海量数据高效存储.高可扩展性和高可用性这些难题.不过就是因为这些问题Nosql诞生了. NOSQL有这些优势: 大数据量,可以通过 ...

  6. HLG1116-选美大赛

    Description 一年一度的哈理工选美大赛开始了.来自各个院系的N个美女们都在一起排成一排,然后从左到右给他们标号(1-N),评委叫兽开始观摩,由于身高高低都不同, 叫兽想从中选出尽可能多的人使 ...

  7. 什么是BFC?(转载)

    在解释 BFC 是什么之前,需要先介绍 Box.Formatting Context的概念. Box: CSS布局的基本单位 Box 是 CSS 布局的对象和基本单位, 直观点来说,就是一个页面是由很 ...

  8. JS运算符

    JS运算符: 使用的运算符的时候不需要声明变量,运算符非变量:1.算术运算符 + - * / % (%为取余数运算符) (自增运算符++) (自减运算符 --) + 运算符作用:1.数值相加 2.字符 ...

  9. MYSQL的常用命令和增删改查语句和数据类型【转】

    连接命令:<a href="http://lib.csdn.net/base/mysql" class='replace_word' title="MySQL知识库 ...

  10. CentOS7 编译安装 Mariadb (实测 笔记 Centos 7.0 + Mariadb 10.0.15)

    环境: 系统硬件:vmware vsphere (CPU:2*4核,内存2G,双网卡) 系统版本:CentOS-7.0-1406-x86_64-DVD.iso 安装步骤: 1.准备 1.1 显示系统版 ...