hadoop输入分片计算(Map Task个数的确定)
作业从JobClient端的submitJobInternal()方法提交作业的同时,调用InputFormat接口的getSplits()方法来创建split。默认是使用InputFormat的子类FileInputFormat来计算分片,而split的默认实现为FileSplit(其父接口为InputSplit)。这里要注意,split只是逻辑上的概念,并不对文件做实际的切分。一个split记录了一个Map Task要处理的文件区间,所以分片要记录其对应的文件偏移量以及长度等。每个split由一个Map Task来处理,所以有多少split,就有多少Map Task。下面着重分析这个方法:
public List<InputSplit> getSplits(JobContext job
) throws IOException {
//getFormatMinSplitSize():始终返回1
//getMinSplitSize(job):获取” mapred.min.split.size”的值,默认为1
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //getMaxSplitSize(job):获取"mapred.max.split.size"的值,
//默认配置文件中并没有这一项,所以其默认值为” Long.MAX_VALUE”,即2^63 – 1
long maxSize = getMaxSplitSize(job); // generate splits
List<InputSplit> splits = new ArrayList<InputSplit>();
List<FileStatus>files = listStatus(job);
for (FileStatus file: files) {
Path path = file.getPath();
FileSystem fs = path.getFileSystem(job.getConfiguration());
long length = file.getLen();
BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length);
if ((length != 0) && isSplitable(job, path)) {
long blockSize = file.getBlockSize();
//计算split大小
long splitSize = computeSplitSize(blockSize, minSize, maxSize); //计算split个数
long bytesRemaining = length; //bytesRemaining表示剩余字节数
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) { //SPLIT_SLOP=1.1
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(new FileSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkIndex].getHosts()));
bytesRemaining -= splitSize;
} if (bytesRemaining != 0) {
splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining,
blkLocations[blkLocations.length-1].getHosts()));
}
} else if (length != 0) {
splits.add(new FileSplit(path, 0, length, blkLocations[0].getHosts()));
} else {
//Create empty hosts array for zero length files
splits.add(new FileSplit(path, 0, length, new String[0]));
}
} // Save the number of input files in the job-conf
job.getConfiguration().setLong(NUM_INPUT_FILES, files.size()); LOG.debug("Total # of splits: " + splits.size());
return splits;
}
首先计算分片的下限和上限:minSize和maxSize,具体的过程在注释中已经说清楚了。接下来用这两个值再加上blockSize来计算实际的split大小,过程也很简单,具体代码如下:
protected long computeSplitSize(long blockSize, long minSize,
long maxSize) {
return Math.max(minSize, Math.min(maxSize, blockSize));
}
接下来就是计算实际的分片个数了。针对每个输入文件,计算input split的个数。while循环的含义如下:
a) 文件剩余字节数/splitSize>1.1,创建一个split,这个split的字节数=splitSize,文件剩余字节数=文件大小 - splitSize
b) 文件剩余字节数/splitSize<1.1,剩余的部分全都作为一个split(这主要是考虑到,不用为剩余的很少的字节数一些启动一个Map Task)
我们发现,在默认配置下,split大小和block大小是相同的。这是不是为了防止这种情况:
一个split如果对应的多个block,若这些block大多不在本地,则会降低Map Task的本地性,降低效率。
到这里split的划分就介绍完了,但是有两个问题需要考虑:
1、如果一个record跨越了两个block该怎么办?
这个可以看到,在Map Task读取block的时候,每次是读取一行的,如果发现块的开头不是上一个文件的结束,那么抛弃第一条record,因为这个record会被上一个block对应的Map Task来处理。那么,第二个问题来了:
2、上一个block对应的Map Task并没有最后一条完整的record,它又该怎么办?
一般来说,Map Task在读block的时候都会多读后续的几个block,以处理上面的这种情况。不过这部分的代码我还没有看到,等看到了再补充吧。
本文基于hadoop1.2.1
如有错误,还请指正
参考文章:《Hadoop技术内幕 深入理解MapReduce架构设计与实现原理》 董西成
转载请注明出处:http://www.cnblogs.com/gwgyk/p/4113929.html
hadoop输入分片计算(Map Task个数的确定)的更多相关文章
- hadoop 分片与分块,map task和reduce task的理解
分块:Block HDFS存储系统中,引入了文件系统的分块概念(block),块是存储的最小单位,HDFS定义其大小为64MB.与单磁盘文件系统相似,存储在 HDFS上的文件均存储为多个块,不同的是, ...
- 如何在hadoop中控制map的个数
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...
- 如何在hadoop中控制map的个数 分类: A1_HADOOP 2015-03-13 20:53 86人阅读 评论(0) 收藏
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...
- (转) 通过input分片的大小来设置map的个数
摘要 通过input分片的大小来设置map的个数 map inputsplit hadoop 前言:在具体执行Hadoop程序的时候,我们要根据不同的情况来设置Map的个数.除了设置固定的每个节点上可 ...
- 字符拆分存入Map计算单词的个数
///计算从命令行输入单词的种类与个数//Map<key,Value>Key-->单词:Value-->数量
- mapreduce map 的个数
在map阶段读取数据前,FileInputFormat会将输入文件分割成split.split的个数决定了map的个数.影响map个数(split个数)的主要因素有: 1) 文件的大小.当块(dfs. ...
- MapReduce深入理解输入和输出格式(1)-输入分片与记录
一个输入分片( in put split)就是能够被单个map 操作 处理的输入块. 每一个map 操作只处理一个输入分片,并且一个一个地处理每条记录,也就是一个键/值对.输入分片和记录都是逻辑上的, ...
- ${mapred.local.dir}选择策略--Map Task存放中间结果
上篇说了block在DataNode配置有多个${dfs.data.dir}时的存储策略,本文主要介绍TaskTracker在配置有多个${mapred.local.dir}时的选择策略. mapre ...
- hadoop输入格式(InputFormat)
InputFormat接口(package org.apache.hadoop.mapreduce包中)里包括两个方法:getSplits()和createRecordReader(),这两个方法分别 ...
随机推荐
- MySQL中int类型的字段使用like查询方法
方法参考自: http://stackoverflow.com/questions/8422455/performing-a-like-comparison-on-an-int-field 也就是使用 ...
- How To Install Java on CentOS and Fedora
PostedDecember 4, 2014 453.8kviews JAVA CENTOS FEDORA Introduction This tutorial will show you how ...
- 3.密码pasuwado————记第一次超越Candy?
激动人心的2016.11.4模拟赛结束了 更激动人心的是我得了90分,第一次超越豪哥,特立文纪念. 3.密码 [问题描述] 哪里有压迫,哪里就有反抗. moreD的宠物在法庭的帮助下终于反抗了.作为一 ...
- GET方法和POST方法
package com.hanqi.cunchu; import android.app.ProgressDialog; import android.support.v7.app.AppCompat ...
- android Fragment 使用
一 .Fragment的理解 Fragment 与activity 相似,但比activity 多出几个方法 ,Fragment的生命周期小于activity 一个Activity 中可以包含多个Fr ...
- SqlServer 递归查询树形数据
一直没有在意过数据库处理树形数据的重要性,直到有一天朋友问起我关于树形数据查询的问题时才发现根本不会,正好这个时候也要用到递归进行树形数据的查询于是在网上查了一圈,语法总结如下 参考文献:https: ...
- heart beat/心跳包
为什么需要heart beat/心跳包?因为tcp keep-alive不能满足人们的实时性的要求,就是这么简单. socket的长时间连接的话,是需要心跳包.心跳包就是维持双方的连接,每隔一段时间发 ...
- venus
The Venus system was a small timesharing system serving five or six users at a time:分时系统 The design ...
- Java输入输出流进阶
输入输出的内容是文本内容,考虑使用字符流. 输入输出的内容是二进制内容,考虑使用字节流. 凡是能用记事本打开并查看的内容称为文本文件,反之则为二进制文件. package ch15; import j ...
- 【IOS 开发】Object - C 入门 之 数据类型详解
1. 数据类型简介及输出() http://www.把下面的替换我.com/html/topnews201408/79/1279.htm csdn123