题目大意

给出一个序列和\(L, R\), 求前k大长度在\([L,R]\)之间的连续子序列的和的和.

解题思路

朴素的想法是对于一个左端点\(p\), 它的右区间取值范围是一个连续的区间即\([p+L-1,p+R-1]\). 枚举这些区间的和然后排序一下什么的, 当然可以用前缀和优化.

考虑对于一个左端点和一个右端点的区间组成的三元组, 设它的答案是\(f(p,l,r)\),那么\(f(p,l,r)\)是一个固定的数, 即\(f(p,l,r)=max(sum(p,r)), \text{其中}(r\in [p+L-1,p+R-1])\).

转化为前缀和后, \(sum(p,r)=sum_r-sum_{p-1}\), 由于\(sum_{p-1}\)一定, 其实就是\(sum_r\)最大的\(r\)最优. 于是这样的最优的\(r\)可以用ST表在\(O(1)\)的时间内求出.

实际上对于每一个左端点都有一个类似的三元组, 考虑如何能把最大的前\(k\)个子序列求出.

若此时\(f(p,l,r)\)(设\([l,r]\)中最优的端点是\(w\))最大, 将\(f(p,l,r)\)累加到答案的同时, \([l,r]\)这个右端点区间会分裂成两个区间\([l,w)\)和\((w,r]\)(前提是这样的区间存在).

为什么? \(w\)只是\([l,r]\)中最大的右端点, 实际上次大的, 第三大的..都能作为可能的答案.

根据上面的分析, 解法已经呼然欲出: 我们维护一个大根堆, 每次取出最大的三元组, 累加答案并分裂区间加入堆. 由于一共只会分裂\(k\)次的区间, 所以堆中的元素不超过\(n+k\)个.

加上预处理, 时间复杂度\(O(n\log{n}+k\log{(n+k)})\).

后记

自己的数据结构真的好差.. 某些大佬(pzr等人)用主席树也能过, 我又不会....

PS:洛谷上的数据范围比标程要大一些

#include <queue>
#include <cstdio>
#include <cstring>
#define W 17
#define N 100010
#define ll long long
#define fo(i, a, b) for(int i = (a); i <= (b); ++i)
#define fd(i, a, b) for(int i = (a); i >= (b); --i)
using namespace std;
inline int min(int a, int b){return a < b ? a : b;}
inline int read()
{
int x = 0; char ch = getchar(); bool ne = 0;
while(ch < '0' || ch > '9') ne |= (ch == '-'), ch = getchar();
while(ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + (ch ^ 48), ch = getchar();
return ne ? -x : x;
}
int n, k, L, R, lg[N], p2[W + 3] = {1}, sum[N];
ll ans;
namespace ST
{
int s[N][W + 3];
void init()
{
fo(i, 1, n) s[i][0] = i;
fo(j, 1, lg[n])
fo(i, 1, n - p2[j] + 1)
{
int x = s[i][j - 1], y = s[i + p2[j - 1]][j - 1];
s[i][j] = sum[x] > sum[y] ? x : y;
}
}
inline int query(int l, int r)
{
int p = lg[r - l + 1];
int x = s[l][p], y = s[r - p2[p] + 1][p];
return sum[x] > sum[y] ? x : y;
}
}
struct Node
{
int p, l, r, w;
Node(){}
Node(int _p, int _l, int _r){p = _p, l = _l, r = _r, w = ST::query(l, r);}
inline int val() const {return sum[w] - sum[p - 1];}
bool operator<(const Node b) const
{
return val() < b.val();
}
};
priority_queue<Node> h;
int main()
{
freopen("fantasy.in", "r", stdin);
freopen("fantasy.out", "w", stdout);
n = read(), k = read(), L = read(), R = read();
fo(i, 1, W) p2[i] = p2[i - 1] << 1;
fo(i, 1, n) sum[i] = read() + sum[i - 1];
fo(i, 2, n) lg[i] = lg[i >> 1] + 1;
ST::init();
fo(i, 1, n - L + 1)
h.push(Node(i, i + L - 1, min(n, i + R - 1)));
fo(i, 1, k)
{
Node t = h.top(); h.pop();
ans += t.val();
if(t.l < t.w) h.push(Node(t.p, t.l, t.w - 1));
if(t.w < t.r) h.push(Node(t.p, t.w + 1, t.r));
}
printf("%lld", ans);
return 0;
}

JZOJ5409. Fantasy && Luogu2048 [NOI2010]超级钢琴的更多相关文章

  1. luogu2048 [NOI2010]超级钢琴 (优先队列+主席树)

    思路:先扫一遍所有点作为右端点的情况,把它们能产生的最大值加到一个优先队列里,然后每次从优先队列里取出最大值,再把它对应的区间的次大值加到优先队列里,这样做K次 可以用一个前缀和,每次找i为右端点的第 ...

  2. BZOJ 2006: [NOI2010]超级钢琴

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2613  Solved: 1297[Submit][Statu ...

  3. Bzoj 2006: [NOI2010]超级钢琴 堆,ST表

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2222  Solved: 1082[Submit][Statu ...

  4. NOI2010超级钢琴 2

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 1296  Solved: 606[Submit][Status ...

  5. BZOJ 2006: [NOI2010]超级钢琴( RMQ + 堆 )

    取最大的K个, 用堆和RMQ来加速... ----------------------------------------------------------------- #include<c ...

  6. BZOJ_2006_[NOI2010]超级钢琴_贪心+堆+ST表

    BZOJ_2006_[NOI2010]超级钢琴_贪心+堆+ST表 Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的 音乐 ...

  7. bzoj2006 [NOI2010]超级钢琴 (及其拓展)

    bzoj2006 [NOI2010]超级钢琴 给定一个序列,求长度在 \([L,\ R]\) 之间的区间和的前 \(k\) 大之和 \(n\leq5\times10^5,\ k\leq2\times1 ...

  8. P2048 [NOI2010]超级钢琴(RMQ+堆+贪心)

    P2048 [NOI2010]超级钢琴 区间和--->前缀和做差 多次查询区间和最大--->前缀和RMQ 每次取出最大的区间和--->堆 于是我们设个3元组$(o,l,r)$,表示左 ...

  9. 洛谷 P2048 [NOI2010]超级钢琴 解题报告

    P2048 [NOI2010]超级钢琴 题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为 ...

随机推荐

  1. mysql之join浅析

    1.可以使用join吗?使用join有什么问题呢?-- >超过3个表不使用join,笛卡尔积问题 -->这些问题是怎么造成的呢? 如果可以使用 Index Nested-Loop Join ...

  2. 9、Redis五大数据类型---有序集合Zset(sorted set)

    一.简介 zset与set异同 相同之处: 都是没有重复元素的字符串集合 不同之处: 有序集合zset的每个成员都关联了一个评分(score),这个评分(score)被用来按照从最低分到最高分的方式排 ...

  3. vue-cli3 vue2 保留 webpack 支持 vite 成功实践

    大家好! 文本是为了提升开发效率及体验实践诞生的. 项目背景: 脚手架:vue-cli3,具体为 "@vue/cli-service": "^3.4.1" 库: ...

  4. 合并函数Combiner.Combine…(Power Query 之 M 语言)

    按相同分隔符合并: =Combiner.CombineTextByDelimiter("分隔符", 引号字符) 分隔符 直接输入 特殊符号 制表符:#(tab) 回车:#(cr) ...

  5. ansible自定义模块

    参考官网:http://www.ansible.com.cn/docs/developing_modules.html#tutorial 阅读 ansible 附带的模块(上面链接)是学习如何编写模块 ...

  6. java多线程10:并发工具类CountDownLatch、CyclicBarrier和Semaphore

    在JDK的并发包(java.util.concurrent下)中给开发者提供了几个非常有用的并发工具类,让用户不需要再去关心如何在并发场景下写出同时兼顾线程安全性与高效率的代码. 本文分别介绍Coun ...

  7. 洛谷八月月赛 II T1 题解

    Content 在大小为 \(n\) 的数字三角形中,第 \(i\) 行包含有 \(i\) 个数字,数字从上到下,从左到右依次排列为 \(1,2,3,\dots\). 设第 \(i\) 行第 \(j\ ...

  8. CF169A Chores 题解

    Content 两兄弟要分担 \(n\) 件家务,第 \(i\) 件家务有一个复杂度 \(h_i\).兄弟俩以一个数 \(x\) 为界.所有满足复杂度 \(>x\) 的家务都给哥哥做,其余的给弟 ...

  9. ABP VNext框架中Winform终端的开发和客户端授权信息的处理

    在ABP VNext框架中,即使在它提供的所有案例中,都没有涉及到Winform程序的案例介绍,不过微服务解决方案中提供了一个控制台的程序供了解其IDS4的调用和处理,由于我开发过很多Winform项 ...

  10. 查找MySql的配置文件my.cnf所在路径

    Linux系统 linux 上可以使用 mysql --help|grep my.cnf 过滤查看 [root@localhost etc]# mysql --help|grep my.cnf ord ...