Jiang Z., Chen T., Chen T. & Wang Z. Robust Pre-Training by Adversarial Contrastive Learning. NIPS, 2020.

本文介绍了一种利用对比学习进行对抗预训练的方法.

主要内容

思想是很简单的, 就是利用对比学习进行训练(样本的augumentation多一个\(\delta\)), 然后再通过此方法训练得到的参数进行finetune.

比较特别的是, 有三种预训练的方案:

  1. Adversarial-to-Adversarial (A2A): 即样本对均加了对抗扰动\((\tilde{x}_i+\delta_i, \tilde{x}_j + \delta_j)\);
  2. Adversarial-to-Standard (A2S):\((\tilde{x}_i+\delta_i, \tilde{x}_j)\);
  3. Dual Stream (DS): 作者在实验中发现, 单独使用A2A, 侵略性太强, 故采取了一种中和的方法, 即同时加上Standard-to-Standard (S2S)的损失.

实验结果也显示, DS的效果是最好的, 即

\[\ell = \ell_{NT} (f \circ g(\tilde{x}_i, \tilde{x}_j; \theta, \theta_{bn}))+ \alpha \cdot \ell_{NT}(f \circ g (\tilde{x}_i +\delta_i, \tilde{x}_j +\delta_j, \theta_{bn^{adv}})),
\]

需要注意的是\(\theta_{bn}, \theta_{bn^{adv}}\), 因为作者作者发现(其实之前便有文章指出过这个问题了), 如果对抗样本和普通样本使用的是同一个batchnorm, 最后结果会变差, 所以作者训练DS或者A2S的时候, 都是使用两个独立的BN的.

本文还有一些在半监督下的分析, 这里就不多赘述了.

代码

原文代码

Robust Pre-Training by Adversarial Contrastive Learning的更多相关文章

  1. Feature Distillation With Guided Adversarial Contrastive Learning

    目录 概 主要内容 reweight 拟合概率 实验的细节 疑问 Bai T., Chen J., Zhao J., Wen B., Jiang X., Kot A. Feature Distilla ...

  2. 谣言检测(GACL)《Rumor Detection on Social Media with Graph Adversarial Contrastive Learning》

    论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun ...

  3. Adversarial Self-Supervised Contrastive Learning

    目录 概 主要内容 Linear Part 代码 Kim M., Tack J. & Hwang S. Adversarial Self-Supervised Contrastive Lear ...

  4. 谣言检测(RDCL)——《Towards Robust False Information Detection on Social Networks with Contrastive Learning》

    论文信息 论文标题:Towards Robust False Information Detection on Social Networks with Contrastive Learning论文作 ...

  5. 论文解读(GROC)《Towards Robust Graph Contrastive Learning》

    论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Ro ...

  6. ICLR2021对比学习(Contrastive Learning)NLP领域论文进展梳理

    本文首发于微信公众号「对白的算法屋」,来一起学AI叭 大家好,卷王们and懂王们好,我是对白. 本次我挑选了ICLR2021中NLP领域下的六篇文章进行解读,包含了文本生成.自然语言理解.预训练语言模 ...

  7. 论文解读(PCL)《Prototypical Contrastive Learning of Unsupervised Representations》

    论文标题:Prototypical Contrastive Learning of Unsupervised Representations 论文方向:图像领域,提出原型对比学习,效果远超MoCo和S ...

  8. A Simple Framework for Contrastive Learning of Visual Representations

    目录 概 主要内容 流程 projection head g constractive loss augmentation other 代码 Chen T., Kornblith S., Norouz ...

  9. 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》

    论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...

随机推荐

  1. accurate, accuse

    accurate accurate(不是acute)和precise是近义词,precise里有个pre,又和excise(切除, 不是exercise),concise一样有cise.Why? 准确 ...

  2. 【STM8】添加头文件、加入库函数

    下面顺便放上STM8L15x-16x-05x的固件库,以及固件库里没有的<stm8l15x_conf.h> 链接打开后,还会发现另外两个文件夹,<src><inc> ...

  3. javaAPI1

    Iterable<T>接口, Iterator<T> iterator() Collection<E>:接口,add(E e) ,size() , Object[] ...

  4. ORACLE 获取执行计划的方法

    一.获取执行计划的6种方法(详细步骤已经在每个例子的开头注释部分说明了): 1. explain plan for获取: 2. set autotrace on : 3. statistics_lev ...

  5. Linux基础命令---mget获取ftp文件

    mget 使用lftp登录mftp服务器之后,可以使用mget指令从服务器获取文件.mget指令可以使用通配符,而get指令则不可以.   1.语法       mget [-E]  [-a]  [- ...

  6. Classs类

    Classs类如何获得 获得Class对象 方式一: 通过Object类中的getClass()方法 方式二: 通过 类名.class 获取到字节码文件对象( 方式三: 通过Class类中的方法(将类 ...

  7. JS - 获取当前的时间,并且转换成年 - 月 - 日格式!

    先获取当前时间,并转换成年月日格式! function getNowFormatDate() { var date = new Date(); var seperator1 = "-&quo ...

  8. 【HarmonyOS】【xml】初学XML布局作业

    首先要明确,有两种布局方式 线性布局:DirectionalLayout 依赖布局:DependentLayout 好,接下来看一看下面的例子 页面案例1 代码如下: <?xml version ...

  9. 强化学习实战 | 表格型Q-Learning玩井字棋(四)游戏时间

    在 强化学习实战 | 表格型Q-Learning玩井字棋(三)优化,优化 中,我们经过优化和训练,得到了一个还不错的Q表格,这一节我们将用pygame实现一个有人机对战,机机对战和作弊功能的井字棋游戏 ...

  10. DDS协议解读及测试开发实践

    DDS概述 DDS是OMG在2004年发布的中间件协议和应用程序接口(API)标准,它为分布式系统提供了低延迟.高可靠性.可扩展的通信架构标准.DDS目前在工业.医疗.交通.能源.国防领域都有广泛的应 ...