Proximal Algorithms 1 介绍
定义
令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ \infty \}\)为闭的凸函数,即其上镜图:
\]
为非空闭的凸集,定义域:
\]
近端算子(是这么翻译的?)proximal operator \(\mathbf{prox}_f: \mathrm{R}^n \rightarrow \mathrm{R}^n\)定义为:

我们常常会对添加一个比例系数\(\lambda\),而关心\(\lambda f\)的近端算子:

注:等式右边乘以一个常数\(\lambda\)便是\(\lambda f\)的形式,所以是等价的。
解释
图形解释

注:图中的细黑线是函数\(f\)的等值线,而粗黑线表示定义域的边界。在蓝色的点处估计其\(\mathbf{prox}_f\)得到红色的点。
可以发现,\(\mathbf{prox}_f(v)\)实际上是对点\(v\)附近的一个估计。
梯度解释
假设\(\lambda\)很小,且\(f\)可微,那么,容易知道\(f(x) + \frac{1}{2\lambda}\|x-v\|_2^2\)取得极值(实际上也是最值)的条件是:
\]
可以看到,\(\mathbf{prox}_f(v)\)近似为在\(v\)点的梯度下降,而\(\lambda\)为步长。
一个简单的例子
有一个问题,就是,如果我们的目的是最小化\(f(x)\),那么利用\(\mathbf{prox}_f\)会不会太愚蠢了,既然我们能求解\(\mathbf{prox}_f\),那么直接最小化\(f(x)\)应该也不是难事吧。这个问题留到以后再讨论吧,我也不知道能否找到一个恰当的例子来反驳。
当\(f\)是一个示性函数:

其中\(\mathcal{C}\)为非空凸集,我们来看看这个时候的\(\mathbf{prox}_f(v)\):
\]
首先,我们可以确定\(x \in \mathcal{C}\), 否则结果为无穷,所以,问题可以转化为一个Euclid范数下投影问题:

所以一个问题是,如果\(\mathbf{prox}_f\)的尾项不用\(\ell_2\)范数,用别的范数会变成什么样?
Proximal Algorithms 1 介绍的更多相关文章
- Proximal Algorithms 6 Evaluating Proximal Operators
目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...
- Proximal Algorithms 5 Parallel and Distributed Algorithms
目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...
- Proximal Algorithms 4 Algorithms
目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...
- Proximal Algorithms
1. Introduction Much like Newton's method is a standard tool for solving unconstrained smooth minimi ...
- Proximal Algorithms 3 Interpretation
目录 Moreau-Yosida regularization 与次梯度的联系 改进的梯度路径 信赖域问题 Proximal Algorithms 这一节,作者总结了一些关于proximal的一些直观 ...
- Proximal Algorithms 7 Examples and Applications
目录 LASSO proximal gradient method ADMM 矩阵分解 ADMM算法 多时期股票交易 随机最优 Robust and risk-averse optimization ...
- Proximal Algorithms 2 Properties
目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
随机推荐
- day04:Python学习笔记
day04:Python学习笔记 1.算数运算符 1.算数运算符 print(10 / 3) #结果带小数 print(10 // 3) #结果取整数,不是四舍五入 print(10 % 3) #结果 ...
- Maven打包及场景
场景一 对当前项目打包并指定主类. <build> <plugins> <plugin> <artifactId>maven-compiler-plug ...
- Oracle中常用的系统函数
本文主要来梳理下Oracle中的常用的系统函数,掌握这些函数的使用,对于我们编写SQL语句或PL/SQL代码时很有帮助,所以这也是必须掌握的知识点. 本文主要包括以下函数介绍:1.字符串函数2. 数值 ...
- 【TCP/IP】之Java socket编程API基础
Socket是Java网络编程的基础,深入学习socket对于了解tcp/ip网络通信协议很有帮助, 此文讲解Socket的基础编程.Socket用法:①.主要用在进程间,网络间通信. 文章目录如下: ...
- 规范——Java后端开发规范
Java后端开发规范 一.技术栈规约 二.命名规范 三.Java代码规范(注释规范.异常与日志.代码逻辑规范) 四.Mybatis与SQL规范 五.结果检查(单元测试及代码扫描) 六.安全规范 一.技 ...
- Function overloading and const keyword
Predict the output of following C++ program. 1 #include<iostream> 2 using namespace std; 3 4 c ...
- 【编程思想】【设计模式】【结构模式Structural】享元模式flyweight
Python版 https://github.com/faif/python-patterns/blob/master/structural/flyweight.py #!/usr/bin/env p ...
- 【Python】【Module】re
python中re模块提供了正则表达式相关操作 字符: . 匹配除换行符以外的任意字符 \w 匹配字母或数字或下划线或汉字 \s 匹配任意的空白符 \d 匹配数字 \b 匹配单词的开始或结束 ^ 匹配 ...
- XGBoost特征选择
1. 特征选择的思维导图 2. XGBoost特征选择算法 (1) XGBoost算法背景 2016年,陈天奇在论文< XGBoost:A Scalable Tree Boosting Sys ...
- CF1119A Ilya and a Colorful Walk 题解
Content 有一个长度为 \(n\) 的数组 \(a_1,a_2,a_3,...,a_n\),试求出两个不相等的数之间的距离的最大值. 数据范围:\(3\leqslant n\leqslant 3 ...