Trees are fundamental in many branches of computer science (Pun definitely intended). Current stateof-the art parallel computers such as Thinking Machines’ CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in computer graphics. This problem involves building and traversing binary trees.

Given a sequence of binary trees, you are to write a program that prints a level-order traversal of each tree. In this problem each node of a binary tree contains a positive integer and all binary trees have have fewer than 256 nodes.

In a level-order traversal of a tree, the data in all nodes at a given level are printed in left-to-right order and all nodes at level k are printed before all nodes at level k+1.

For example, a level order traversal of the tree on the right is: 5, 4, 8, 11, 13, 4, 7, 2, 1.

In this problem a binary tree is specified by a sequence of pairs ‘(n,s)’ where n is the value at the node whose path from the root is given by the string s. A path is given be a sequence of ‘L’s and ‘R’s where ‘L’ indicates a left branch and ‘R’ indicates a right branch. In the tree diagrammed above, the node containing 13 is specified by (13,RL), and the node containing 2 is specified by (2,LLR). The root node is specified by (5,) where the empty string indicates the path from the root to itself. A binary tree is considered to be completely specified if every node on all root-to-node paths in the tree is given a value exactly once.

Input

The input is a sequence of binary trees specified as described above. Each tree in a sequence consists of several pairs ‘(n,s)’ as described above separated by whitespace. The last entry in each tree is ‘()’. No whitespace appears between left and right parentheses.

All nodes contain a positive integer. Every tree in the input will consist of at least one node and no more than 256 nodes. Input is terminated by end-of-file.

Output

For each completely specified binary tree in the input file, the level order traversal of that tree should be printed. If a tree is not completely specified, i.e., some node in the tree is NOT given a value or a node is given a value more than once, then the string ‘not complete’ should be printed.

Sample Input

(11,LL) (7,LLL) (8,R)
(5,) (4,L) (13,RL) (2,LLR) (1,RRR) (4,RR) ()
(3,L) (4,R) ()

Sample Output

5 4 8 11 13 4 7 2 1
not complete

HINT

这个题目可以不适用二叉树,可以使用map排序来解决,但学到数据结构了就使用二叉树来解决的。

程序设计思路是每行进行读取,然后读取这一行中的内容,直到遇到()结束这一组数据。用指针数组来存储数据。只要遇到一组数据就插入到二叉树里面,如果二叉树对应的结点已经插入了数据,就输出错误,如果二叉树查找对应结点的时候遇到了中间还没有插入的结点,那么就先建立一个空的结点,存储的数据string num的大小为0,(不为0说明已经存入了数据)。输出采用的是层序遍历,当发现有结点的数据域的长度为0那么就说明这个点没有插入输出错误。

这个题目程序有很多细节需要注意,针对自己的程序的总结如下:

  1. 使用 new后一定要初始化结点。
  2. 每次输出结果都要将二叉树删除,并将头指针指空。
  3. 删除结点递归的时候一定要先判断左右孩子是否为空,先序遍历也一样。

Accepted

#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<sstream> using namespace std;
struct TREE{
string num;
TREE* right;
TREE* lift;
}; void remove(TREE* head){ //删除结点空间
if (!head)return;
if(head->lift) remove(head->lift);
if(head->right) remove(head->right);
delete(head);
} bool insert(TREE* head, string var, string s) { //插入
TREE* p = head,*temp;
for (int i = 0;i < s.size()-1;i++) {
temp = s[i] == 'R' ? p->right : p->lift;
if (temp==NULL){
temp = new TREE; //如果是空的就申请空间
temp->lift = temp->right = NULL;
}
if (s[i] == 'R')p->right = temp;
else p->lift = temp;
p=temp; //向下指
}
if (p->num.size())return 0;
else { p->num = var;return 1; }
} void print(TREE* head) { //首先层序遍历,然后输出,以内要先判断是否合法
vector<TREE *>list; //因为不需要边输出边层序遍历,所以不用使用队列
int i = 0;
if(head) list.push_back(head);
while (i++ < list.size()) { //遍历
if (!list[i-1]->num.size()) { cout << "not complete" << endl;return; }
if (list[i-1]->lift)list.push_back(list[i-1]->lift);
if (list[i-1]->right)list.push_back(list[i-1]->right);
}
for (int i = 0;i < list.size();i++) { //输出
if (i)cout << ' ' << list[i]->num;
else cout << list[i]->num;
}
cout << endl;
} using namespace std;
int main(){
TREE* head=NULL;
string s,svar;
while(getline(cin,s)){ //读取每一行
if (!head) {
head = new TREE; //申请头地址
head->lift = head->right = NULL;
}
stringstream ss(s);
while (ss >> s ) { //读取每一个点
if (s == "()") { //清空并输出。
print(head);
remove(head);
head = NULL;
break;
}
int i = s.find(','); //拆分
svar = s.substr(1, i-1); //数值位
s = s.substr(i + 1, s.size()-1);//路径
if (!insert(head, svar, s)) {
cout << "not complete" << endl;
remove(head);head = NULL;
while (ss >> s)if (s == "()")break;//清空本组数据
while (s != "()")cin >> s;
break; //调出循环,进行下一组
}
}
}
}

Trees on the level UVA - 122的更多相关文章

  1. Trees on the level UVA - 122 复习二叉树建立过程,bfs,queue,strchr,sscanf的使用。

    Trees are fundamental in many branches of computer science (Pun definitely intended). Current state- ...

  2. 【紫书】Trees on the level UVA - 122 动态建树及bfs

    题意:给你一些字符串,代表某个值被插入树中的位置.让你输出层序遍历. 题解:动态建树. 由于输入复杂,将输入封装成read_input.注意输入函数返回的情况 再将申请新节点封装成newnode(). ...

  3. Trees on the level UVA - 122 (二叉树的层次遍历)

    题目链接:https://vjudge.net/problem/UVA-122 题目大意:输入一颗二叉树,你的任务是按从上到下,从左到右的顺序输出各个结点的值.每个结点都按照从根节点到它的移动序列给出 ...

  4. UVA 122 -- Trees on the level (二叉树 BFS)

     Trees on the level UVA - 122  解题思路: 首先要解决读数据问题,根据题意,当输入为“()”时,结束该组数据读入,当没有字符串时,整个输入结束.因此可以专门编写一个rea ...

  5. UVA.122 Trees on the level(二叉树 BFS)

    UVA.122 Trees on the level(二叉树 BFS) 题意分析 给出节点的关系,按照层序遍历一次输出节点的值,若树不完整,则输出not complete 代码总览 #include ...

  6. Trees on the level(指针法和非指针法构造二叉树)

    Trees on the level Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. E - Trees on the level

     Trees on the level  Background Trees are fundamental in many branches of computer science. Current ...

  8. hdu 1622 Trees on the level(二叉树的层次遍历)

    题目链接:https://vjudge.net/contest/209862#problem/B 题目大意: Trees on the level Time Limit: 2000/1000 MS ( ...

  9. Trees in a Wood. UVA 10214 欧拉函数或者容斥定理 给定a,b求 |x|<=a, |y|<=b这个范围内的所有整点不包括原点都种一棵树。求出你站在原点向四周看到的树的数量/总的树的数量的值。

    /** 题目:Trees in a Wood. UVA 10214 链接:https://vjudge.net/problem/UVA-10214 题意:给定a,b求 |x|<=a, |y|&l ...

随机推荐

  1. 关于Java中的对象、类、抽象类、接口、继承之间的联系

    关于Java中的对象.类.抽象类.接口.继承之间的联系: 导读: 寒假学习JavaSE基础,其中的概念属实比较多,关联性也比较大,再次将相关的知识点复习一些,并理顺其中的关系. 正文: 举个例子:如果 ...

  2. WPF 之绘画(十一)

    一.WPF 绘画 WPF 可以绘制线段(Line).矩形(Rectange).椭圆(Ellipse).路径(Path).具体使用如下所示: <!--(1)线段:Line--> <Li ...

  3. 程序员如何在VsCode上看基金?

    一 我是一个程序员. 代码是我的禁锢,基金是我的自由. 打破禁锢,奔向自由,也许只差几个定投. 有人说,买基金一定要心态好,要学会风险对冲,把8成的钱全仓买基金,剩余2成买意外身亡险,基金大涨就赚,基 ...

  4. 永远不要眼高手低,Vue完整实现一套简单的增删改查CURD操作

    1: 永远不要眼高手低,看起来很简单,但是你从来没有去动手试一下,就不知道其中真正需要注意的许多细节, 2:完整code如下: 1 <!DOCTYPE html> 2 <html l ...

  5. PacketStream 和 honeygain 推荐一款可以通过分享带宽赚钱的APP

    方法很简单,只需打开网址 PacketStream 或 honeygain 注册,下载客户端登录即可分享带宽.价格0.1美元/G. 绑定paypal账号即可提现.退出客户端即可停止分享带宽.

  6. spring boot的 yml和properties的对比

    Spring Boot 虽然做了大量的工作来简化配置,但其配置依然是相当的复杂!支持的外部配置方式就有很多种,笔者没有去统计,也许是为了灵活使用吧.   application.yml 和 appli ...

  7. HDOJ-6685(暴力+思维)

    Rikka With Coin HDOJ-6685 主要的思想如下: 首先10元的硬币最多只会用一个,如果用了两个,直接替换成一个10元.一个20元一定不亏. 20元的硬币最多只会用三个,如果用了四个 ...

  8. GNS3通过“云”连接到虚拟机实验

    GNS3通过"云"连接到虚拟机实验并使用wireshark工具对数据分析 观看本文之前注意!!!!! 做这次实验,我所遇到的问题,会全部写在文章结尾,如果读者们遇到问题,可查看. ...

  9. 死磕Spring之IoC篇 - @Bean 等注解的实现原理

    该系列文章是本人在学习 Spring 的过程中总结下来的,里面涉及到相关源码,可能对读者不太友好,请结合我的源码注释 Spring 源码分析 GitHub 地址 进行阅读 Spring 版本:5.1. ...

  10. FreeBSD 日常应用

    freebsd日常应用 办公libreoffice或者apache openoffice 设计 图像编辑:gimp 矢量图设计:lnkscape 视频剪辑:openshot 视频特效:natron 编 ...