Trees are fundamental in many branches of computer science (Pun definitely intended). Current stateof-the art parallel computers such as Thinking Machines’ CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in computer graphics. This problem involves building and traversing binary trees.

Given a sequence of binary trees, you are to write a program that prints a level-order traversal of each tree. In this problem each node of a binary tree contains a positive integer and all binary trees have have fewer than 256 nodes.

In a level-order traversal of a tree, the data in all nodes at a given level are printed in left-to-right order and all nodes at level k are printed before all nodes at level k+1.

For example, a level order traversal of the tree on the right is: 5, 4, 8, 11, 13, 4, 7, 2, 1.

In this problem a binary tree is specified by a sequence of pairs ‘(n,s)’ where n is the value at the node whose path from the root is given by the string s. A path is given be a sequence of ‘L’s and ‘R’s where ‘L’ indicates a left branch and ‘R’ indicates a right branch. In the tree diagrammed above, the node containing 13 is specified by (13,RL), and the node containing 2 is specified by (2,LLR). The root node is specified by (5,) where the empty string indicates the path from the root to itself. A binary tree is considered to be completely specified if every node on all root-to-node paths in the tree is given a value exactly once.

Input

The input is a sequence of binary trees specified as described above. Each tree in a sequence consists of several pairs ‘(n,s)’ as described above separated by whitespace. The last entry in each tree is ‘()’. No whitespace appears between left and right parentheses.

All nodes contain a positive integer. Every tree in the input will consist of at least one node and no more than 256 nodes. Input is terminated by end-of-file.

Output

For each completely specified binary tree in the input file, the level order traversal of that tree should be printed. If a tree is not completely specified, i.e., some node in the tree is NOT given a value or a node is given a value more than once, then the string ‘not complete’ should be printed.

Sample Input

(11,LL) (7,LLL) (8,R)
(5,) (4,L) (13,RL) (2,LLR) (1,RRR) (4,RR) ()
(3,L) (4,R) ()

Sample Output

5 4 8 11 13 4 7 2 1
not complete

HINT

这个题目可以不适用二叉树,可以使用map排序来解决,但学到数据结构了就使用二叉树来解决的。

程序设计思路是每行进行读取,然后读取这一行中的内容,直到遇到()结束这一组数据。用指针数组来存储数据。只要遇到一组数据就插入到二叉树里面,如果二叉树对应的结点已经插入了数据,就输出错误,如果二叉树查找对应结点的时候遇到了中间还没有插入的结点,那么就先建立一个空的结点,存储的数据string num的大小为0,(不为0说明已经存入了数据)。输出采用的是层序遍历,当发现有结点的数据域的长度为0那么就说明这个点没有插入输出错误。

这个题目程序有很多细节需要注意,针对自己的程序的总结如下:

  1. 使用 new后一定要初始化结点。
  2. 每次输出结果都要将二叉树删除,并将头指针指空。
  3. 删除结点递归的时候一定要先判断左右孩子是否为空,先序遍历也一样。

Accepted

#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<sstream> using namespace std;
struct TREE{
string num;
TREE* right;
TREE* lift;
}; void remove(TREE* head){ //删除结点空间
if (!head)return;
if(head->lift) remove(head->lift);
if(head->right) remove(head->right);
delete(head);
} bool insert(TREE* head, string var, string s) { //插入
TREE* p = head,*temp;
for (int i = 0;i < s.size()-1;i++) {
temp = s[i] == 'R' ? p->right : p->lift;
if (temp==NULL){
temp = new TREE; //如果是空的就申请空间
temp->lift = temp->right = NULL;
}
if (s[i] == 'R')p->right = temp;
else p->lift = temp;
p=temp; //向下指
}
if (p->num.size())return 0;
else { p->num = var;return 1; }
} void print(TREE* head) { //首先层序遍历,然后输出,以内要先判断是否合法
vector<TREE *>list; //因为不需要边输出边层序遍历,所以不用使用队列
int i = 0;
if(head) list.push_back(head);
while (i++ < list.size()) { //遍历
if (!list[i-1]->num.size()) { cout << "not complete" << endl;return; }
if (list[i-1]->lift)list.push_back(list[i-1]->lift);
if (list[i-1]->right)list.push_back(list[i-1]->right);
}
for (int i = 0;i < list.size();i++) { //输出
if (i)cout << ' ' << list[i]->num;
else cout << list[i]->num;
}
cout << endl;
} using namespace std;
int main(){
TREE* head=NULL;
string s,svar;
while(getline(cin,s)){ //读取每一行
if (!head) {
head = new TREE; //申请头地址
head->lift = head->right = NULL;
}
stringstream ss(s);
while (ss >> s ) { //读取每一个点
if (s == "()") { //清空并输出。
print(head);
remove(head);
head = NULL;
break;
}
int i = s.find(','); //拆分
svar = s.substr(1, i-1); //数值位
s = s.substr(i + 1, s.size()-1);//路径
if (!insert(head, svar, s)) {
cout << "not complete" << endl;
remove(head);head = NULL;
while (ss >> s)if (s == "()")break;//清空本组数据
while (s != "()")cin >> s;
break; //调出循环,进行下一组
}
}
}
}

Trees on the level UVA - 122的更多相关文章

  1. Trees on the level UVA - 122 复习二叉树建立过程,bfs,queue,strchr,sscanf的使用。

    Trees are fundamental in many branches of computer science (Pun definitely intended). Current state- ...

  2. 【紫书】Trees on the level UVA - 122 动态建树及bfs

    题意:给你一些字符串,代表某个值被插入树中的位置.让你输出层序遍历. 题解:动态建树. 由于输入复杂,将输入封装成read_input.注意输入函数返回的情况 再将申请新节点封装成newnode(). ...

  3. Trees on the level UVA - 122 (二叉树的层次遍历)

    题目链接:https://vjudge.net/problem/UVA-122 题目大意:输入一颗二叉树,你的任务是按从上到下,从左到右的顺序输出各个结点的值.每个结点都按照从根节点到它的移动序列给出 ...

  4. UVA 122 -- Trees on the level (二叉树 BFS)

     Trees on the level UVA - 122  解题思路: 首先要解决读数据问题,根据题意,当输入为“()”时,结束该组数据读入,当没有字符串时,整个输入结束.因此可以专门编写一个rea ...

  5. UVA.122 Trees on the level(二叉树 BFS)

    UVA.122 Trees on the level(二叉树 BFS) 题意分析 给出节点的关系,按照层序遍历一次输出节点的值,若树不完整,则输出not complete 代码总览 #include ...

  6. Trees on the level(指针法和非指针法构造二叉树)

    Trees on the level Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. E - Trees on the level

     Trees on the level  Background Trees are fundamental in many branches of computer science. Current ...

  8. hdu 1622 Trees on the level(二叉树的层次遍历)

    题目链接:https://vjudge.net/contest/209862#problem/B 题目大意: Trees on the level Time Limit: 2000/1000 MS ( ...

  9. Trees in a Wood. UVA 10214 欧拉函数或者容斥定理 给定a,b求 |x|<=a, |y|<=b这个范围内的所有整点不包括原点都种一棵树。求出你站在原点向四周看到的树的数量/总的树的数量的值。

    /** 题目:Trees in a Wood. UVA 10214 链接:https://vjudge.net/problem/UVA-10214 题意:给定a,b求 |x|<=a, |y|&l ...

随机推荐

  1. windows(wsl)下的trino编译和升级注意事项

    最近在进行旧版本的prestosql和prestodb升级相关的操作,尝试自己编译了一下,这里记录一下过程和遇到问题的处理. 因为Trino不支持windows下的编译,如果使用windows最方便的 ...

  2. Flannel和Calico网络插件工作流程对比

    Flannel和Calico网络插件对比   Calico简介 Calico是一个纯三层的网络插件,calico的bgp模式类似于flannel的host-gw Calico方便集成 OpenStac ...

  3. 后端程序员之路 4、一种monitor的做法

    record_t包含_sum._count._time_stamp._max._min最基础的一条记录,可以用来记录最大值.最小值.计数.总和metric_t含有RECORD_NUM(6)份recor ...

  4. 从头捋了一遍 Java 代理机制,收获颇丰

    尽人事,听天命.博主东南大学硕士在读,热爱健身和篮球,乐于分享技术相关的所见所得,关注公众号 @ 飞天小牛肉,第一时间获取文章更新,成长的路上我们一起进步 本文已收录于 「CS-Wiki」Gitee ...

  5. 从零搭建一个IdentityServer——单页应用身份验证

    上一篇文章我们介绍了Asp.net core中身份验证的相关内容,并通过下图描述了身份验证及授权的流程: 注:改流程图进行过修改,第三方用户名密码登陆后并不是直接获得code/id_token/acc ...

  6. HashMap之tableSizeFor方法图解

    目录 普通人的简单粗暴方式 示例代码 问题 大神的实现 移位的思想 全过程示意图 初始值 右移一位+或运算 右移二位+或运算 右移四位+或运算 右移八位+或运算 右移十六位+或运算 结果+1 初始容量 ...

  7. java 方法详解

    什么是方法 方法的定义和调用 值传递与引用传递 值传递:指的是在方法调用时,传递的是参数是按值的拷贝传递. 特点:传递的是值的拷贝,也就是传递后就互不相关了. 引用传递:指的是在方法调用时,传递的参数 ...

  8. Java8的新特性--函数式接口

    目录 函数式接口 什么是函数式接口 函数式接口的使用 Java8内置的四大核心函数式接口 一.Consumer:消费型接口(void accept(T t)) 二.Supplier:供给型接口(T g ...

  9. Java安全初学之反射

    前言: 复现fastjson的时候深深意识到了需要好好学习一下Java和Java安全,激情的学习了一番java安全中重要的几部分:反序列化.反射.rmi.动态代理,从反射开始做个总结. 反射:java ...

  10. 强制断开ssh连接出现ssh崩溃问题

    出现原因 finalshell意外终止,导致ssh连接意外终止 之后怎么都连不上虚拟机的ssh,一看是虚拟机的ssh已经被意外暂停,可能是跟finalshell的意外终止有关 解决 chmod 600 ...