本文仅就PCA原理及应用作一简单总结, 具体的数学原理等考试后再补上.

1. PCA推导

目标

对于正交空间中的样本点,现想将其投影到一个低维超平面中使得所有样本可在该平面中得到恰当的表达.

什么叫恰当的表达?

  • 最近重构性:样本点到该超平面的距离都足够近(距离最小).
  • 最大可分性:样本点到该超平面上的投影尽可能分开(方差最大, 协方差为0)

可以证明,上面两个表述可推出等价的投影矩阵.

基于最近重构性的PCA推导

假设样本已中心化\(\sum x_i=0\),设新坐标系为\(W=\{w_1,w_2,\dots,w_d\}\),其中\(w_i\)是标准正交基向量, 即\(||w_i||=1,w_i^Tw_j=0(i\neq j)\)

现欲降维至\(d'<d\),则样本点\(x_i\)在低维坐标系中的投影为\(z_i=(z_{i1},z_{i2},\dots,z_{id'})\),其中\(z_{ij}=w_j^Tx_i\)

此时再将新坐标反投影回原坐标系(重构)可得\(x_i'=\sum_{j=1}^{d'}z_{ij}w_j\)

考虑原样本点\(x_i\)与重构后\(x_i'\)的距离为:

根据最小重构性,可得优化目标:找满足\(W^TW=1\)且使得\(-tr(W^TXX^TW)\)最小的\(W\).

根据拉格朗日乘子法(需补充详细过程),可得\(XX^TW=\lambda W\).故只需对\(XX^T\)进行特征值分解.将求得的特征值排序取前\(d'\)个构成\(W=(w_1,\dots,w_{d'})\). 投影坐标为\(y=W^Tx\)​

也可以理解为求得的是使得\(XX^T\)对角化(协方差为0)且方差最大(对角元取最大的几个特征值)的\(W\)

  • 逐一选取特征向量与直接选取具有等价性

  • 实践中常用奇异值分解代替特征值分解

2. PCA应用(做题)

一些细节

  • 如何组织数据?

    \[\left \{
    \begin{matrix}
    &a_1&\dots&a_n\\
    &b_1&...&b_n\\
    &...&...&...\\
    &z_1&...&z_n\\
    \end{matrix}
    \right\}\tag{1}
    \]

    \(m\)维\(n\)个数据

  • 如何中心化?

    每行数据减去均值

  • 计算步骤

    1. 中心化数据
    2. 计算协方差矩阵
    3. 求特征值
    4. 取最大的前\(d'\)​​个特征值对应的特征向量标准正交化后得到\(W\)​
      • 如果有重特征值排在前\(d'\)则需施密特正交化
    5. 新坐标\(y=W^Tx\)

【数据科学基础复习 - 3】PCA主成分分析的更多相关文章

  1. python3 数据科学基础

    第一章 1.Anaconda(最著名的python数据科学平台) 下面小伙伴们咱们来初初识下Anaconda吧 What is Anaconda???? 回答: (1).科学计算的平台 (2).有很多 ...

  2. (数据科学学习手札22)主成分分析法在Python与R中的基本功能实现

    上一篇中我们详细介绍推导了主成分分析法的原理,并基于Python通过自编函数实现了挑选主成分的过程,而在Python与R中都有比较成熟的主成分分析函数,本篇我们就对这些方法进行介绍: R 在R的基础函 ...

  3. (数据科学学习手札20)主成分分析原理推导&Python自编函数实现

    主成分分析(principal component analysis,简称PCA)是一种经典且简单的机器学习算法,其主要目的是用较少的变量去解释原来资料中的大部分变异,期望能将现有的众多相关性很高的变 ...

  4. 数据降维-PCA主成分分析

    1.什么是PCA? PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法.PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特 ...

  5. 零基础使用Swift学习数据科学

    概述 Swift正迅速成为数据科学中最强大.最有效的语言之一 Swift与Python非常相似,所以你会发现2种语言的转换非常平滑 我们将介绍Swift的基础知识,并学习如何使用该语言构建你的第一个数 ...

  6. 《Python数据科学手册》第五章机器学习的笔记

    目录 <Python数据科学手册>第五章机器学习的笔记 0. 写在前面 1. 判定系数 2. 朴素贝叶斯 3. 自举重采样方法 4. 白化 5. 机器学习章节总结 <Python数据 ...

  7. python书籍推荐:Python数据科学手册

    所属网站分类: 资源下载 > python电子书 作者:today 链接:http://www.pythonheidong.com/blog/article/448/ 来源:python黑洞网 ...

  8. 深入对比数据科学工具箱:Python和R之争

    建议:如果只是处理(小)数据的,用R.结果更可靠,速度可以接受,上手方便,多有现成的命令.程序可以用.要自己搞个算法.处理大数据.计算量大的,用python.开发效率高,一切尽在掌握. 概述 在真实的 ...

  9. CS229 6.6 Neurons Networks PCA主成分分析

    主成分分析(PCA)是一种经典的降维算法,基于基变换,数据原来位于标准坐标基下,将其投影到前k个最大特征值对应的特征向量所组成的基上,使得数据在新基各个维度有最大的方差,且在新基的各个维度上数据是不相 ...

随机推荐

  1. Flink源码学习笔记(2) 基于Yarn的自动伸缩容实现

    1.背景介绍 随着实时计算技术在之家内部的逐步推广,Flink 任务数及计算量都在持续增长,集群规模的也在逐步增大,本着降本提效的理念,我们研发了 Flink 任务伸缩容功能: 提供自动伸缩容功能,可 ...

  2. CaCl2 项目介绍。

    一 是什么? 中国自然语言处理(NLP)研究项目. 二 主要功能? 从互联网获取的大量文本数据,结合自研力量进行分析.将数据重新格式化为大量条目,目录,并根据金融行业分类标准对这些条目进行了分类. 三 ...

  3. .NET 5.0 Docker 镜像 错误修复方法

    在给eshopondapr 打镜像的时候碰到了3个错误 1.restore: Received an unexpected EOF or 0 bytes from the transport stre ...

  4. js源码-自定义数组的pop和shift方法

    本文将自定义_pop和_shift来模拟数组的pop和shift方法 _pop: /* *js中数组的pop方法:删除数组的最后一个元素,把数组的长度减1,并且返回删除的这个元素:如果数组为空,则po ...

  5. JavaScript闭包的那些事

    JavaScript闭包 1.函数在JavaScript中的地位 在介绍闭包之前,可以先聊聊函数在JavaScript中的地位,因为闭包的存在是与函数息息相关的. JavaScript之所以可以称之为 ...

  6. Redis哨兵模式高可用解决方案

    一.序言 Redis高可用有两种模式:哨兵模式和集群模式,本文基于哨兵模式搭建一主两从三哨兵Redis高可用服务. 1.目标与收获 一主两从三哨兵Redis服务,基本能够满足中小型项目的高可用要求,使 ...

  7. Mac系统如何显示隐藏文件

    Command+Shift+. 可以显示隐藏文件.文件夹,再按一次,恢复隐藏:finder下使用Command+Shift+G 可以前往任何文件夹,包括隐藏文件夹.

  8. bom案例6-轮播图

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Embedded Python应用小结

    转载请注明来源:https://www.cnblogs.com/hookjc/ (1)初始化Python脚本运行环境 Py_Initialize(); (2) 脚本的编译 bytecode = Py_ ...

  10. 【发点感慨】我的cnblogs的文章被爬到了别的网站,阅读量比在cnblogs上还要高

    近期我写了挺多VictoriaMetrics的文章,在搜索相关文章的时候发现,我的文章被别的网站爬去了: 写写技术文章就是无偿分享给别人看的,越多人看到越多人受益,这一点没毛病. 但是: 爬了别人的文 ...