修改:维护g[i][j]表示第i个数为j的概率,从前往后转移

转移方程:g[id][i]=g[id][i-1]*p+g[id][i]*(1-p),初始g[i][a[i]]=1

询问:对于每一个人i,输出sigma(P(除了i有j个正数)/(j+1))*P(i是正数)

P(i是正数)就是1-g[i][0],以下简写为h[i],j+1的逆元可以预处理出来

考虑P(除了i有j个正数),用f[j]表示前i个数有j个正数的概率

转移方程(滚动后):f[j]=f[j]*g[i][0]+f[j-1]*h[i],初始[0]=1

那么相当于要去掉i,设f'[j]=P(除了i有j个正数),则有转移:

f[j]=f'[j]*g[i][0]+f'[j-1]*h[i],f'[j]=(f[j]-f'[j-1]*h[i])/g[i][0](递推即可)

(需要特判g[i][0]=0,此时相当于他一定活着,那么f'[j]=f[j+1])

最终的期望可以用g来算,对于第i个人,即sigma(j*g[i][j])

,总时间复杂度为o(Qn+Cn^2logn),可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 998244353
4 int n,m,p,x,y,z,a[205],f[205],inv[205],g[205][105];
5 int ksm(int n,int m){
6 if (!m)return 1;
7 int s=ksm(n,m>>1);
8 s=1LL*s*s%mod;
9 if (m&1)s=1LL*s*n%mod;
10 return s;
11 }
12 int main(){
13 scanf("%d",&n);
14 inv[0]=inv[1]=1;
15 for(int i=1;i<=n;i++){
16 scanf("%d",&x);
17 g[i][x]=1;
18 }
19 for(int i=2;i<=n;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
20 scanf("%d",&m);
21 for(int i=1;i<=m;i++){
22 scanf("%d%d",&p,&x);
23 if (!p){
24 scanf("%d%d",&y,&z);
25 y=1LL*y*ksm(z,mod-2)%mod;
26 g[x][0]=(g[x][0]+1LL*g[x][1]*y)%mod;
27 for(int j=1;j<=100;j++)
28 g[x][j]=(g[x][j]*(mod+1LL-y)+1LL*g[x][j+1]*y)%mod;
29 }
30 else{
31 f[0]=1;
32 for(int j=1;j<=x;j++)f[j]=0;
33 for(int j=1;j<=x;j++){
34 scanf("%d",&y);
35 a[j]=g[y][0];
36 for(int k=j;k;k--)
37 f[k]=(1LL*f[k]*a[j]+f[k-1]*(mod+1LL-a[j]))%mod;
38 f[0]=1LL*f[0]*a[j]%mod;
39 }
40 for(int j=1;j<=x;j++){
41 y=z=0;
42 int t=ksm(a[j],mod-2);
43 for(int k=0;k<x;k++){
44 if (!a[j])z=f[k+1];
45 else z=(f[k]-z*(mod+1LL-a[j])%mod+mod)*t%mod;
46 y=(y+1LL*z*inv[k+1])%mod;
47 }
48 printf("%lld ",y*(mod+1LL-a[j])%mod);
49 }
50 printf("\n");
51 }
52 }
53 for(int i=1;i<=n;i++){
54 x=0;
55 for(int j=1;j<=100;j++)x=(x+1LL*j*g[i][j])%mod;
56 printf("%d ",x);
57 }
58 }

[bzoj5340]假面的更多相关文章

  1. BZOJ5340: [Ctsc2018]假面

    BZOJ5340: [Ctsc2018]假面 https://lydsy.com/JudgeOnline/problem.php?id=5340 分析: 背包,只需要求\(g_{i,j}\)表示强制活 ...

  2. BZOJ5340 [Ctsc2018]假面 【概率dp】

    题目链接 BZOJ5340 题解 我们能很容易维护每个人当前各种血量的概率 设\(p[u][i]\)表示\(u\)号人血量为\(i\)的概率 每次攻击的时候,讨论一下击中不击中即可转移 是\(O(Qm ...

  3. BZOJ5340: [Ctsc2018]假面【概率+期望】【思维】

    LINK 思路 首先考虑减血,直接一个dp做过去,这个部分分不难拿 然后是\(op=1\)的部分 首先因为要知道每个人被打的概率,所以需要算出这个人活着的时候有多少个人活着时概率是什么 那么用\(g_ ...

  4. BZOJ5340 & 洛谷4564 & LOJ2552:[CTSC2018]假面——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5340 https://www.luogu.org/problemnew/show/P4564 ht ...

  5. 并不对劲的bzoj5340:loj2552:uoj399:p4564: [Ctsc2018]假面

    题目大意 有\(n\)(\(n\leq200\))个非负整数\(m_1,m_2,...,m_n\)(\(\forall i\in[1,n],m_i\leq100\)),有\(q\)(\(q\leq2* ...

  6. BZOJ 1064 假面舞会(NOI2008) DFS判环

    此题,回想Sunshinezff学长给我们出的模拟题,原题啊有木有!!此处吐槽Sunshinezff爷出题不人道!! 不过也感谢Sunshinezff学长的帮助,我才能做出来.. 1064: [Noi ...

  7. 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]

    BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1655  Solved: 798[Submit][S ...

  8. [BZOJ1064][Noi2008]假面舞会

    [BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...

  9. 1064: [Noi2008]假面舞会 - BZOJ

    Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办 ...

随机推荐

  1. Java基础- 重写,重构和重载

    重写也称为覆盖, 是指子类与父类的方法名相同但是可以有不同的权限(子类权限需大于父类),返回值(J2SE 5.0以后增加的功能,且子类的返回值必须是父类返回值的子类)或者方法实现. 重写体现了子类补充 ...

  2. Unity——AssetBundle打包工具

    Unity批量打AB包 为了资源热更新,Unity支持将所有资源打包成AssetBundle资源,存放在SteamingAssets文件夹中: 在项目发布之前,需要将所有资源打包成.ab文件,动态加载 ...

  3. 【数据结构与算法Python版学习笔记】图——强连通分支

    互联网 我们关注一下互联网相关的非常巨大图: 由主机通过网线(或无线)连接而形成的图: 以及由网页通过超链接连接而形成的图. 网页形成的图 以网页(URI作为id)为顶点,网页内包含的超链接作为边,可 ...

  4. PyCharm中目录directory与包package的区别及相关import详解

    一.概念介绍 在介绍目录directory与包package的区别之前,先理解一个概念---模块 模块的定义:本质就是以.py结尾的python文件,模块的目的是为了其他程序进行引用. 目录(Dire ...

  5. 【二食堂】Alpha - 测试报告

    TextMarking Alpha阶段测试报告 前后端测试过程及结果 在Alpha阶段,测试工作紧跟后端开发进度,一下是我们所做的一些测试工作. 后端单元测试 测试代码可以在git仓库中查看,后端对所 ...

  6. Beta阶段第四次会议

    Beta阶段第四次会议 时间:2020.5.20 完成工作 姓名 工作 难度 完成度 ltx 1.对小程序进行修改2.提出相关api修改要求 轻 85% xyq 1.设计所需api文档2.编写相关技术 ...

  7. 【做题记录】[NOIP2011 提高组] 观光公交

    P1315 [NOIP2011 提高组] 观光公交 我们想在 \(k\) 次加速每一次都取当前最优的方案加速. 考虑怎样计算对于每一条边如果在当前情况下使用加速器能够使答案减少的大小. 如果当前到达某 ...

  8. [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法

    [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法 目录 [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法 0x00 摘要 0x01 工作线程主体 1.1 ...

  9. Logic strength modeling

    7.9 Verilog HDL提供了信号争用.双向通过门.电阻式MOS器件.动态MOS.电荷共享的精确建模,并通过允许标量净信号值具有全范围的未知值和不同强度级别或强度级别的组合来实现其他依赖于技术的 ...

  10. Docker安装配置Tomcat

    1.使用docker pull tomcat下载镜像(不加tag则是下载最新版本) 2.运行容器(-d 后台运行:-p 指定端口映射),接的是镜像ID 3.进入容器执行命令,接的是容器ID 4.宿主机 ...