Codeforces 1446D2 - Frequency Problem (Hard Version)(根分)
人菜结论题做不动/kk
首先考虑此题一个非常关键的结论:我们设整个数列的众数为 \(G\),那么在最优子段中,\(G\) 一定是该子段的众数之一。考虑反证法,如果最优子段中众数出现次数 \(<\) 该子段中出现次数最多的数的出现次数,那么我们考虑向左向右扩展这个区间,显然由于 \(G\) 是整个区间中出现次数最多的数,我们总可以找到一个时刻,满足 \(G\) 的出现次数 \(\ge\) 原子段中出现次数最多的数的出现次数,此时子段的长度肯定不劣于原子段的长度,答案也不会变得更差。
看出这个性质之后 D1 就变得异常 trivial 了,考虑枚举除了 \(G\) 之外字段中另一个众数 \(x\),那么考虑一个非常常用的套路:将序列中 \(G\) 的权值看作 \(1\),\(x\) 的权值看作 \(-1\),那么一个子段满足条件,当且仅当该子段中所有数的权值之和恰好为 \(0\),拿个桶记录一下即可。
接下来考虑怎样解 D2。注意到这个东西长得像极了 P4062 Code+#1 Yazid 的新生舞会,而这东西用线段树显然是不太好维护的,因此考虑我的那个根分做法。考虑将所有数分为出现次数 \(\le\sqrt{n}\) 和 \(>\sqrt{n}\) 进行处理。出现次数 \(>\sqrt{n}\) 的数的个数显然是 \(\mathcal O(\sqrt{n})\) 级别的,我们对于这些数重复一遍 D1 的过程即可。对于出现次数 \(\le\sqrt{n}\) 的数我们换个角度批量处理这些数,即我们不关心出现次数最多的是哪个数,我们直接枚举众数的出现次数 \(c\),然后双针,对于每个左端点,向右一直扩展直到其中出现次数最多的数出现次数 \(>c\),如果我们发现出现次数最多的数不唯一则更新答案即可。这样复杂度就是 \(n\sqrt{n}\)。
const int MAXN=2e5;
const int DLT=MAXN+3;
int n,a[MAXN+5],cnt[MAXN+5],fst[DLT<<1],cnt_cnt[MAXN+5],res=0;
int main(){
scanf("%d",&n);int G=0,mxcnt=0,lim=(int)sqrt(n),mx=0;
for(int i=1;i<=n;i++) scanf("%d",&a[i]),cnt[a[i]]++;
for(int i=1;i<=n;i++) chkmax(mx,cnt[i]);
for(int i=1;i<=n;i++) if(cnt[i]==mx) mxcnt++,G=i;
if(mxcnt>=2) return printf("%d\n",n),0;
// printf("%d\n",G);
for(int i=1;i<=n;i++) if(cnt[i]>lim&&i!=G){
memset(fst,-1,sizeof(fst));fst[DLT]=0;
for(int j=1,s=0;j<=n;j++){
if(a[j]==G) s++;if(a[j]==i) s--;
if(~fst[s+DLT]) chkmax(res,j-fst[s+DLT]);
else fst[s+DLT]=j;
}
} //printf("%d\n",res);
for(int i=1;i<=lim+3;i++){
memset(cnt,0,sizeof(cnt));int mx=0;
memset(cnt_cnt,0,sizeof(cnt_cnt));
for(int l=1,r=1;l<=n;l++){
while(r<=n&&max(mx,cnt[a[r]]+1)<=i){
cnt_cnt[cnt[a[r]]]--;cnt[a[r]]++;cnt_cnt[cnt[a[r]]]++;
chkmax(mx,cnt[a[r]]);++r;
} //printf("%d %d %d\n",i,l,r);
if(cnt_cnt[mx]>=2) chkmax(res,r-l);
cnt_cnt[cnt[a[l]]]--;cnt[a[l]]--;cnt_cnt[cnt[a[l]]]++;
if(!cnt_cnt[mx]) mx--;
}
} printf("%d\n",res);
return 0;
}
Codeforces 1446D2 - Frequency Problem (Hard Version)(根分)的更多相关文章
- 题解 CF1446D2 【Frequency Problem (Hard Version)】
给出一个跑得快一点的做法,洛谷最优解 (时间是第二名的 \(\frac{1}{2}\)), CF 第一页 D1 首先找到整个序列的众数 \(G\), 很容易证明答案序列中的两个众数中其中一个是 \(G ...
- Codeforces 1406E - Deleting Numbers(根分+数论)
Codeforces 题面传送门 & 洛谷题面传送门 一道个人感觉挺有意思的交互题,本人一开始想了个奇奇怪怪的做法,还以为卡不进去,结果发现竟然过了,而且还是正解( 首先看到这类题目可以考虑每 ...
- PTA 11-散列4 Hard Version (30分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/680 5-18 Hashing - Hard Version (30分) Given ...
- codeforces 340C Tourist Problem
link:http://codeforces.com/problemset/problem/340/C 开始一点也没思路,赛后看别人写的代码那么短,可是不知道怎么推出来的啊! 后来明白了. 首先考虑第 ...
- codeforces B. Routine Problem 解题报告
题目链接:http://codeforces.com/problemset/problem/337/B 看到这个题目,觉得特别有意思,因为有熟悉的图片(看过的一部电影).接着让我很意外的是,在纸上比划 ...
- PTA 07-图5 Saving James Bond - Hard Version (30分)
07-图5 Saving James Bond - Hard Version (30分) This time let us consider the situation in the movie ...
- Codeforces 527D Clique Problem
http://codeforces.com/problemset/problem/527/D 题意:给出一些点的xi和wi,当|xi−xj|≥wi+wj的时候,两点间存在一条边,找出一个最大的集合,集 ...
- Codeforces 706C - Hard problem - [DP]
题目链接:https://codeforces.com/problemset/problem/706/C 题意: 给出 $n$ 个字符串,对于第 $i$ 个字符串,你可以选择花费 $c_i$ 来将它整 ...
- Codeforces 1096D - Easy Problem - [DP]
题目链接:http://codeforces.com/problemset/problem/1096/D 题意: 给出一个小写字母组成的字符串,如果该字符串的某个子序列为 $hard$,就代表这个字符 ...
随机推荐
- keras框架下的深度学习(二)二分类和多分类问题
本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...
- [no_code][Beta]项目展示博客
$( "#cnblogs_post_body" ).catalog() 团队项目链接 Beta阶段核心开发点: github 前端 github 后端 github OCR文档-含 ...
- SpringCloud 2020.0.4 系列之服务降级
1. 概述 老话说的好:做人要正直,做事要正派,胸怀坦荡.光明磊落,才会赢得他人的信赖与尊敬. 言归正传,之前聊了服务间通信的组件 Feign,今天我们来聊聊服务降级. 服务降级简单的理解就是给一个备 ...
- 微信小程序的实现原理
一.背景 网页开发,渲染线程和脚本是互斥的,这也是为什么长时间的脚本运行可能会导致页面失去响应的原因,本质就是我们常说的 JS 是单线程的 而在小程序中,选择了 Hybrid 的渲染方式,将视图层和逻 ...
- gdal3.1.0+VS2017+geos+kml编译总结
1.简介 gdal3.1.0编译过程中必须依赖proj,编译gdal必须要编译proj,proj的编译需要sqlite3,因此想要编译gdal3.1.0需要先编译proj和sqlite3 2.关于sq ...
- 单片机入门stm32知识学习的先后顺序
这里大概的罗列了一些学习STM32的内容,以及学习顺序.如果是新手的话,建议边看中文手册和学习视频;如果是已经入门的,个人建议自己做一个项目,不论项目大小,当然里面会涉及到自己已经学习过的,或者是自己 ...
- Python课程笔记(三)
1.python定义类.创建对象 class Myclass: # 定义Myclass类 def sum(self,x,y): self.x = x self.y = y return self.x+ ...
- MySQL 的架构与组件
MySQL 的逻辑架构图设计图 连接/线程处理:管理客户端连接/会话[mysql threads] 解析器:通过检查SQL查询中的每个字符来检查SQL语法,并为每个SQL查询生成 SQL_ID. 此 ...
- Python技法4:闭包
闭包:用函数代替类 有时我们会定义只有一个方法(除了__init__()之外)的类,而这种类可以通过使用闭包(closure)来替代.闭包是被外层函数包围的内层函数,它能够获取外层函数范围中的变量(即 ...
- 【Go语言学习笔记】hello world
书接上回,上回说到了为什么要学习Go语言,今天我们来实际写一下,感受一下Go语言的精美之处. 环境搭建 安装和设置 Windows: Go安装包下载网址:https://golang.org/dl/ ...