A. Knapsack

猜个结论——先把所有的东西加起来,如果小于 \(\frac{1}{2}m\) 就输出不合法;如果在 \([\frac{1}{2}m, m]\)之间直接全部输出;若大于 \(m\),那就想办法把他减到 \(m\) 以下并且大于等于 \(\frac{1}{2}m\),那么问题就转化为了求序列减完以后大于等于 \(\frac{1}{2}m\) 的情况下的最小值。那我们排个序,从大到小循环,把当前能减的都减掉就是了。

for (int i = n; i; i--)
{
//fout << '$' << p[i] << ' ' << a[p[i]] << ' ';
if ((sum - a[p[i]]) * 2 >= W)
{
sum -= a[p[i]];
used[p[i]] = false;
}
}

B. Catching Cheaters

又是一个巧妙的序列 DP。设 \(f_{i,j}\)表示 \(a\) 中选出的子段以 \(i\) 结尾、\(b\) 中选出的子段以 \(j\) 结尾的最大相似值。为什么可以这么设状态呢?因为我们根本不关心前面是什么样子的,我只想知道截止 \((i-1,j-1)\) 这个位置的最大相似值,并且这个东西满足最优子结构。状态转移方程:

\[f_{i,j} = \max\{0, f_{i-1,j}+1, f_{i,j-1}+1, f_{i-1,j-1}+4[a_i==b_j] - 2\}
\]

这个东西思考起来很困难,因为总感觉这个和两个序列所选段的起始点有关;仔细想想,其实是无关的。

C. Xor Tree

假设留下了 \(k\) 个点,则一共 \(k\) 条边,要构成一个可以有重边的树,那么它合法当且仅当这个重边唯一,即 \(j\) 是 \(i\) 要找的点且 \(i\) 是\(j\) 要找的点,这样的点对唯一。

最少扣掉几个数转化为最多留下几个数。把原序列搞到 0/1 Trie 上,设 \(f_x\) 表示 \(subtree(x)\) 中最多留下几个点。如何转移?我们发现,若它的其中一颗子树的 \(size > 1\),那么这颗子树一定是自己内部全连完;若它两颗子树的 \(size_1\) 都大于 1,那么这颗树就断开了。所以状态转移方程为 \(f_x = max(f_{ls},f_{rs})+1\),若只有一个孩子就直接等于。可以证明这样是充分必要的。

Codeforces Round #683 (Div. 1) Solution的更多相关文章

  1. Codeforces Round #466 (Div. 2) Solution

    从这里开始 题目列表 小结 Problem A Points on the line Problem B Our Tanya is Crying Out Loud Problem C Phone Nu ...

  2. 老年OIer的Python实践记—— Codeforces Round #555 (Div. 3) solution

    对没错下面的代码全部是python 3(除了E的那个multiset) 题目链接:https://codeforces.com/contest/1157 A. Reachable Numbers 按位 ...

  3. Codeforces Round #545 (Div. 1) Solution

    人生第一场Div. 1 结果因为想D想太久不晓得Floyd判环法.C不会拆点.E想了个奇奇怪怪的set+堆+一堆乱七八糟的标记的贼难写的做法滚粗了qwq靠手速上分qwqqq A. Skyscraper ...

  4. Codeforces Round 500 (Div 2) Solution

    从这里开始 题目地址 瞎扯 Problem A Piles With Stones Problem B And Problem C Photo of The Sky Problem D Chemica ...

  5. Codeforces Round #607 (Div. 1) Solution

    从这里开始 比赛目录 我又不太会 div 1 A? 我菜爆了... Problem A Cut and Paste 暴力模拟一下. Code #include <bits/stdc++.h> ...

  6. Codeforces Round #578 (Div. 2) Solution

    Problem A Hotelier 直接模拟即可~~ 复杂度是$O(10 \times n)$ # include<bits/stdc++.h> using namespace std; ...

  7. Codeforces Round #683 (Div. 2, by Meet IT)【ABCD】

    比赛链接:https://codeforces.com/contest/1447 A. Add Candies 题意 \(1\) 到 \(n\) 个袋子里依次有 \(1\) 到 \(n\) 个糖果,可 ...

  8. Codeforces Round #525 (Div. 2) Solution

    A. Ehab and another construction problem Water. #include <bits/stdc++.h> using namespace std; ...

  9. Codeforces Round #520 (Div. 2) Solution

    A. A Prank Solved. 题意: 给出一串数字,每个数字的范围是$[1, 1000]$,并且这个序列是递增的,求最多擦除掉多少个数字,使得别人一看就知道缺的数字是什么. 思路: 显然,如果 ...

随机推荐

  1. WPF中的命令(Command)

    这节来讲一下WPF中的命令(Command)的使用. [认识Command] 我们之前说过,WPF本身就为我们提供了一个基础的MVVM框架,本节要讲的命令就是其中一环,通过在ViewModel中声明命 ...

  2. SharkCTF2021 pwn“初见”1

    (无内鬼 今日不想学了 水一篇) nc nc nc easyoverflow Intoverflow

  3. 【c++ Prime 学习笔记】目录索引

    第1章 开始 第Ⅰ部分 C++基础 第2章 变量和基本类型 第3章 字符串.向量和数组 第4章 表达式 第5章 语句 第6章 函数 第7章 类 第 Ⅱ 部分 C++标准库 第8章 IO库 第9章 顺序 ...

  4. MySQL:基础语法-3

    MySQL:基础语法-3 记录一下 MySQL 基础的一些语法,便于查询,该部分内容主要是参考:bilibili 上 黑马程序员 的课程而做的笔记,由于时间有点久了,课程地址忘记了 上文MySQL:基 ...

  5. Java基础-Java8新特性

    一.Lambda表达式 在了解 Lambda 之前,首先回顾以下Java的方法. Java的方法分为实例方法,例如:Integer的equals()方法: public final class Int ...

  6. nio之缓冲区(Buffer)理解

    一.缓冲区简介 Nio中的 Buffer 是用于存储特定基础类型的一个容器.为了能熟练的使用 Nio中的各种 Buffer , 我们需要理解 Buffer 中的 三个重要 的属性. 1. capaci ...

  7. $dy$讲课总结

    字符串: 1.广义后缀自动机(大小为\(m\))上跑一个长度为\(n\)的串,所有匹配位置及在\(parent\)树上其祖先的数量的和为\(min(n^2,m)\),单次最劣是\(O(m)\). 但是 ...

  8. STM32入门-STM32时钟系统,时钟初始化配置函数

    在前面推文的介绍中,我们知道STM32系统复位后首先进入SystemInit函数进行时钟的设置,然后进入主函数main.那么我们就来看下SystemInit()函数到底做了哪些操作,首先打开我们前面使 ...

  9. Flink计算pv和uv的通用方法

    PV(访问量):即Page View, 即页面浏览量或点击量,用户每次刷新即被计算一次. UV(独立访客):即Unique Visitor,访问您网站的一台电脑客户端为一个访客.00:00-24:00 ...

  10. [转]浅谈电路设计中应用DDR3处理缓存问题

    本文转自:浅谈电路设计中应用DDR3处理缓存问题_若海人生的专栏-CSDN博客 DDR系列SDRAM存储芯片的高速率.高集成度和低成本使其理所当然成为存储芯片中的一霸.在PC和消费电子领域自是如此,它 ...