P2966 [USACO09DEC]牛收费路径Cow Toll Paths

题目描述

Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has set up a series of tolls that the cows will pay when they traverse the cowpaths throughout the farm.

The cows move from any of the N (1 <= N <= 250) pastures conveniently numbered 1..N to any other pasture over a set of M (1 <= M <= 10,000) bidirectional cowpaths that connect pairs of different pastures A_j and B_j (1 <= A_j <= N; 1 <= B_j <= N). FJ has assigned a toll L_j (1 <= L_j <= 100,000) to the path connecting pastures A_j and B_j.

While there may be multiple cowpaths connecting the same pair of pastures, a cowpath will never connect a pasture to itself. Best of all, a cow can always move from any one pasture to any other pasture by following some sequence of cowpaths.

In an act that can only be described as greedy, FJ has also assigned a toll C_i (1 <= C_i <= 100,000) to every pasture. The cost of moving from one pasture to some different pasture is the sum of the tolls for each of the cowpaths that were traversed plus a *single additional toll* that is the maximum of all the pasture tolls encountered along the way, including the initial and destination pastures.

The patient cows wish to investigate their options. They want you to write a program that accepts K (1 <= K <= 10,000) queries and outputs the minimum cost of trip specified by each query. Query i is a pair of numbers s_i and t_i (1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i) specifying a starting and ending pasture.

Consider this example diagram with five pastures:

The 'edge toll' for the path from pasture 1 to pasture 2 is 3. Pasture 2's 'node toll' is 5.

To travel from pasture 1 to pasture 4, traverse pastures 1 to 3 to 5 to 4. This incurs an edge toll of 2+1+1=4 and a node toll of 4 (since pasture 5's toll is greatest), for a total cost of 4+4=8.

The best way to travel from pasture 2 to pasture 3 is to traverse pastures 2 to 5 to 3. This incurs an edge toll of 3+1=4 and a node toll of 5, for a total cost of 4+5=9.

跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道。为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费。 农场中由N(1 <= N <= 250)片草地(标号为1到N),并且有M(1 <= M <= 10000)条 双向道路连接草地A_j和B_j(1 <= A_j <= N; 1 <= B_j <= N)。

奶牛们从任意一片草 地出发可以抵达任意一片的草地。FJ已经在连接A_j和B_j的双向道路上设置一个过路费L_j (1 <= L_j <= 100,000)。 可能有多条道路连接相同的两片草地,但是不存在一条道路连接一片草地和这片草地本身。最 值得庆幸的是,奶牛从任意一篇草地出发,经过一系列的路径,总是可以抵达其它的任意一片 草地。 除了贪得无厌,叫兽都不知道该说什么好。

FJ竟然在每片草地上面也设置了一个过路费C_i (1 <= C_i <= 100000)。从一片草地到另外一片草地的费用,是经过的所有道路的过路 费之和,加上经过的所有的草地(包括起点和终点)的过路费的最大值。 任劳任怨的牛们希望去调查一下她们应该选择那一条路径。

她们要你写一个程序,接受K(1 <= K <= 10,000)个问题并且输出每个询问对应的最小花费。第i个问题包含两个数字s_i 和t_i(1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i),表示起点和终点的草地。

输入输出格式

输入格式:

  • Line 1: Three space separated integers: N, M, and K

  • Lines 2..N+1: Line i+1 contains a single integer: C_i

  • Lines N+2..N+M+1: Line j+N+1 contains three space separated

integers: A_j, B_j, and L_j

  • Lines N+M+2..N+M+K+1: Line i+N+M+1 specifies query i using two space-separated integers: s_i and t_i

输出格式:

  • Lines 1..K: Line i contains a single integer which is the lowest cost of any route from s_i to t_i

输入输出样例

输入样例#1:

5 7 2
2
5
3
3
4
1 2 3
1 3 2
2 5 3
5 3 1
5 4 1
2 4 3
3 4 4
1 4
2 3
输出样例#1:

8
9

floyd中要先枚举中间点k,我们可以按照点权从小到大排序,在计算最大点权的时候只要考虑i,j,k三者中点权的最大值即可。

通过排序使得最大值变成当前点的点权。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = ;
struct node{
int v,id;
bool operator < (const node &a) const
{
return v < a.v;
}
}c[MAXN];
int w[MAXN][MAXN];
int d[MAXN][MAXN];
int t[MAXN];
int n,m,q; void floyd()
{
for (int a=; a<=n; ++a)
{
int k = c[a].id;
for (int i=; i<=n; ++i)
for (int j=; j<=n; ++j)
{
d[i][j] = d[j][i] = min(d[i][k]+d[k][j],d[i][j]);
w[i][j] = w[j][i] = min(w[i][j],d[i][j]+max(c[a].v,max(t[i],t[j])));
}
}
}
int main()
{
memset(w,0x3f,sizeof(w));
scanf("%d%d%d",&n,&m,&q);
for (int i=; i<=n; ++i)
{
scanf("%d",&c[i].v);
c[i].id = i;
}
for (int i=; i<=n; i++)
for (int j=; j<=n; j++)
if (i!=j) d[i][j] = d[j][i] = w[i][j] = w[j][i] = 1e9;
else w[i][j] = w[j][i] = c[i].v;
sort(c+,c+n+);
for (int i=; i<=n; i++)
t[c[i].id] = c[i].v;
for (int x,y,z,i=; i<=m; ++i)
{
scanf("%d%d%d",&x,&y,&z);
if (z<d[x][y])
d[x][y]=d[y][x]=z;
}
floyd();
while (q--)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",w[x][y]);
}
return ;
}

P2966 [USACO09DEC]牛收费路径Cow Toll Paths的更多相关文章

  1. Luogu P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...

  2. 洛谷 P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...

  3. [Luogu P2966][BZOJ 1774][USACO09DEC]牛收费路径Cow Toll Paths

    原题全英文的,粘贴个翻译题面,经过一定的修改. 跟所有人一样,农夫约翰以宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道 ...

  4. [USACO09DEC]牛收费路径Cow Toll Paths(floyd、加路径上最大点权值的最短路径)

    https://www.luogu.org/problem/P2966 题目描述 Like everyone else, FJ is always thinking up ways to increa ...

  5. [USACO09DEC]牛收费路径Cow Toll Paths

    跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费. 农场中 ...

  6. 洛谷 2966 2966 [USACO09DEC]牛收费路径Cow Toll Paths

    [题意概述] 给出一个图,点有正点权,边有正边权,通过两点的代价为两点间的最短路加上路径通过的点的点权最大值. 有M个询问,每次询问通过两点的代价. [题解] 先把点按照点权从小到大排序,然后按照这个 ...

  7. 【[USACO09DEC]牛收费路径Cow Toll Paths】

    很妙的一道题,我之前一直是用一个非常暴力的做法 就是枚举点权跑堆优化dijkstra 但是询问次数太多了 于是一直只有50分 今天终于抄做了这道题,不贴代码了,只说一下对这道题的理解 首先点权和边权不 ...

  8. P2966 [USACO09DEC]Cow Toll Paths G

    题意描述 Cow Toll Paths G 这道题翻译的是真的不错,特别是第一句话 给定一张有 \(n\) 个点 \(m\) 条边的无向图,每条边有边权,每个点有点权. 两点之间的路径长度为所有边权 ...

  9. [USACO09DEC] Cow Toll Paths

    https://www.luogu.org/problem/show?pid=2966 题目描述 Like everyone else, FJ is always thinking up ways t ...

随机推荐

  1. SQA计划与测试规程

    长大一条龙之SQA计划与测试规程 一.SQA计划 1.软件工程 我们之进行开发之前,在弄完需求分析的前提下,进行了软件一些列的建模和评估,我们建立了基于类的模型图类图,基于场景的模型图流程图,再对这些 ...

  2. Jmeter入门16 数据构造之随机数Random Variable & __Random函数

     接口测试有时参数使用随机数构造.jmeter添加随机数两种方式 1  添加配置 > Random Variable  2  __Random函数   ${__Random(1000,9999) ...

  3. Yii2获取当前程序执行的sql语句

    1.Yii2获取当前程序执行的sql语句: $query = model::find();         $dataProvider = new ActiveDataProvider([       ...

  4. python-文件基本操作(一)

    一.打开文件的方法: fp=file("路径","模式") fp=open("路径","模式") 注意:file()和o ...

  5. Cesium.js学习第一天(设置材质)

    var viewer = new Cesium.Viewer('cs'); var entity = viewer.entities.add({ position: Cesium.Cartesian3 ...

  6. org.apache.tomcat.util.descriptor.web.WebXml.setVersion Unknown version string [4.0]. Default version will be used.报错

    org.apache.tomcat.util.descriptor.web.WebXml.setVersion Unknown version string [4.0]. Default versio ...

  7. Entity Framework 三

    DbContext:上下文 EDM将生成从System.Data.Entity.DbContext类派生的SchoolDBEntities类,如下所示.派生DbContext的类在实体框架中被称为上下 ...

  8. Android手机上抓包神器

    Packet Capture 一款依托安卓系统自身VPN来达到免Root抓取数据包的应用程序.Packet Capture一个使用SSL网络解密的 捕获数据包/网络嗅探 工具,虽然它的功能并不丰富,但 ...

  9. spring入门(六) spring mvc+mybatis

    1.引入依赖 <!-- https://mvnrepository.com/artifact/org.mybatis/mybatis --> <dependency> < ...

  10. c# 动态编译继承接口

    c#里面的动态编译我就不讲了,主要的都有了.如果不熟悉我推荐博文 https://www.cnblogs.com/maguoyong/articles/5553827.html 标准的动态编译 这里主 ...