#include<stdio.h>
int exgcd(int a,int b,int &x,int &y)
{
if(b==)
{
x=;
y=;
return a;
}
int r=exgcd(b,a%b,x,y);
int t=x;x=y;y=t-(a/b)*y;
return r;
}
int main(){
int n,m,x,y;
while(~scanf("%d%d",&m,&n)){
exgcd(m,n,x,y);
while(x<)
x+=n;
printf("%d\n",x);
}
}

51Nod 1256 求乘法逆元--扩展欧几里德的更多相关文章

  1. $O(n+log(mod))$求乘法逆元的方法

    题目 LOJ #152. 乘法逆元 2 题解 一个奇技淫巧qwq.可以离线求乘法逆元,效率\(O(n+log(mod))\). 考虑处理出\(s_n\)表示\(\prod_{i=1}^na_i\).以 ...

  2. 51Nod 1256 扩展欧几里得求乘法逆元

    给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Input 输入2个数M, N中间用 ...

  3. 51Nod 1256 乘法逆元 扩展欧几里得

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = ...

  4. 【codevs 1200】【NOIP 2012】同余方程 拓展欧几里德求乘法逆元模板题

    模板,,, #include<cstdio> using namespace std; void exgcd(long long a,long long b,long long & ...

  5. 51Nod 1352 集合计数(扩展欧几里德)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1352 题目大意: 给出N个固定集合{1,N},{2,N-1} ...

  6. HDU-5685 Problem A 求乘法逆元

    题目链接:https://cn.vjudge.net/problem/HDU-5685 题意 给一个字符串S和一个哈希算法 $ H(s)=\prod_{i=1}^{i\leq len(s)}(S_{i ...

  7. exgcd,求乘法逆元

    procedure exgcd(a,b:int64); var t:longint; begin then begin x:=;y:=; exit; end else exgcd(b,a mod b) ...

  8. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

  9. 51Nod 1013 3的幂的和 快速幂 | 乘法逆元 | 递归求和公式

    1.乘法逆元 直接使用等比数列求和公式,注意使用乘法逆元 ---严谨,失细节毁所有 #include "bits/stdc++.h" using namespace std; #d ...

随机推荐

  1. 利用LD_PRELOAD进行hook

    原文地址:http://hbprotoss.github.io/posts/li-yong-ld_preloadjin-xing-hook.html 好久没玩hook这种猥琐的东西里,今天在Linux ...

  2. Gradle下载及安装教程

    Gradle是基于Groovy语言的项目自动化建构工具,在使用Gradle之前常用的构建工具有Ant和Maven,使用这些工具我们可以用来管理项目依赖,打包,部署和发布等.使用Gradle我们将需要的 ...

  3. Uniy 组件式泛型单例模式

    我们知道,在Unity中,所有对象脚本都必须继承MonoBehavior脚本,才能使用Unity内置的脚本功能; 通常我们可以用静态类来取代单例模式,但是静态类方法的缺点是,它们必须继承最底层的类-- ...

  4. [HNOI2012]三角形覆盖问题

    题面 二维平面中,给定 \(N\) 个等腰直角三角形(每个三角形的两条直角边分别平行于坐标轴,斜边从左上到右下).我们用三个非负整数 \((x, y, d)\) 来描述这样一个三角形,三角形三个顶点的 ...

  5. 牛客 小a与星际探索

    链接:https://ac.nowcoder.com/acm/contest/317/C来源:牛客网 小a正在玩一款星际探索游戏,小a需要驾驶着飞船从1号星球出发前往n号星球.其中每个星球有一个能量指 ...

  6. LCA(最近公共祖先)——dfs+ST 在线算法

    一.前人种树 博客:浅谈LCA的在线算法ST表 二.沙场练兵 题目:POJ 1330 Nearest Common Ancestors 题解博客:http://www.cnblogs.com/Miss ...

  7. POI读取带有公式的Excel单元格-xssf

    if(CellType.FORMULA == row.getCell(j).getCellTypeEnum()) { try { cellValue = String.valueOf(row.getC ...

  8. Java的同步容器和并发容器

    前言: 之前在介绍Java集合的时候说到,java提供的实现类很少是线程安全的.只有几个比较古老的类,比如Vector.Hashtable等是线程安全的,尤其是Hashtable,古老到连命名规范都没 ...

  9. [C/C++] C++声明和定义的区别

    ·变量定义:用于为变量分配存储空间,还可为变量指定初始值.程序中,变量有且仅有一个定义. ·变量声明:用于向程序表明变量的类型和名字. ·定义也是声明:当定义变量时我们声明了它的类型和名字. ·ext ...

  10. Redis集群操作手册

    一.原始集群(6节点 3主3从): (1)启动集群: [root@bhz004 ~]# /usr/local/redis/bin/redis-server /usr/local/redis-clust ...