之前在学习计数问题的时候也在网上找了很多关于行列式的资料

  但是发现很多地方都只介绍2\3阶的情况

  一些论文介绍的方法又看不懂

  然后就一直耽搁着

  今天恰好出到这样的题目 发现标算的代码简介明了 还挺开心的

function det(a:arr):int64;
var i,j,k:longint;
t,ans:int64; begin
ans:=;
for i:= to n do
begin
for j:=i+ to n do
while a[j,i]<> do
begin
t:=a[i,i] div a[j,i];
for k:=i to n do a[i,k]:=(a[i,k]-t*a[j,k]) mod p;
for k:= to n do swap(a[i,k],a[j,k]);
ans:=-ans;
end;
if a[i,i] = then exit();
ans:=(ans * a[i,i]) mod p;
end;
while ans< do inc(ans,p);
exit(ans);
end;

计算n阶行列式的模板的更多相关文章

  1. C#程序计算N阶行列式的值及N元一次方程组

    C#程序计算N阶行列式的值及N元一次方程组 用了挺长时间自行完成了C#程序计算N阶行列式的值及N元一次方程组.由于自己没有在网上查阅其他资料,所以只能硬着头皮用最朴素的思想和基础的算法进行编程.在给出 ...

  2. 线代: N阶行列式

    线性变换 将 (x, y) 变成 (2 x + y, x - 3 y) 就叫做线性变换, 这就是矩阵乘法, 用于表示一切线性变换. 几何上看, 把平面上的每个点 (x, y) 都变到 (2 x + y ...

  3. n阶行列式计算----c语言实现(完结)

    花了半天时间,写了这个n阶行列式计算的程序,应该算是比较优美吧,有很多地方多次做了优化,程序占用内存不是很大,要是说小吧,也不合适,因为里边有一个递归,而且递归的深度还比较深.时间复杂度具体没有细看, ...

  4. 基于上三角变换或基于DFS的行(列)展开的n阶行列式求值算法分析及性能评估

    进入大一新学期,看完<线性代数>前几节后,笔者有了用计算机实现行列式运算的想法.这样做的目的,一是巩固自己对相关概念的理解,二是通过独立设计算法练手,三是希望通过图表直观地展现涉及的两种算 ...

  5. TOJ4537: n阶行列式

    4537: n阶行列式  Time Limit(Common/Java):1000MS/3000MS     Memory Limit:65536KByteTotal Submit: 28       ...

  6. 行列式(三):n阶行列式

    1.数学定义   n阶行列式定义如下: 2.算法实现 函数名: GetValue() 功能:返回一个行列式的值 Private Function GetValue() Dim gValue As Do ...

  7. python中numpy计算数组的行列式numpy.linalg.det()

    numpy.linalg.det numpy.linalg.det(a)[source] 计算任何一个数组a的行列式,但是这里要求数组的最后两个维度必须是方阵. 参数: a : (..., M, M) ...

  8. SPOJ - Find The Determinant III 计算矩阵的行列式答案 + 辗转相除法思想

    SPOJ -Find The Determinant III 参考:https://blog.csdn.net/zhoufenqin/article/details/7779707 参考中还有几个关于 ...

  9. 编程计算2×3阶矩阵A和3×2阶矩阵B之积C。 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值。 要求: (1)从键盘分别输入矩阵A和B, 输出乘积矩阵C (2) **输入提示信息为: 输入矩阵A之前提示:"Input 2*3 matrix a:\n" 输入矩阵B之前提示

    编程计算2×3阶矩阵A和3×2阶矩阵B之积C. 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值. 要求: ...

随机推荐

  1. Java工程师笔试题整理[校招篇]

    Java工程师笔试题整理[校招篇]     隔着两个月即将开始校招了.你是不是也想借着这个机会崭露头角,拿到某些大厂的offer,赢取白富美.走上人生巅峰?当然如果你还没能打下Java基础,一定要先打 ...

  2. Mootools 学习随笔

    简单的介绍下Mootools: MooTools是一个简洁,模块化,面向对象的开源JavaScript web应用框架.在处理js.css.html时候,为web开发者提供了一个跨浏览器的js解决方案 ...

  3. 签名APK后仍然出现INSTALL_PARSE_FAILED_NO_CERTIFICATES的解决方案

    修改apk里的dex并且修复后重新打包进apk里,使用signapk.jar签名后安装仍然出现INSTALL_PARSE_FAILED_NO_CERTIFICATES,搜了很久,使用了多种方法签名仍然 ...

  4. OpenCV入门:(七:OpenCV取随机数以及显示文字)

    1.随机颜色 OpenCV中自带了取随机数的方法,使用步骤: RNG rng( 0xFFFFFFFF ); 随机数 = rng.uniform( 下限,上限 ); 2.显示文字 , , bool bo ...

  5. Linux-Shell脚本编程-学习-5-Shell编程-使用结构化命令-if-then-else-elif

    if-then语句 if-then语句格式如下 if comman then command fi bash shell中的if语句可鞥会和我们接触的其他if语句的工作方式不同,bash shell的 ...

  6. 名字管理系统demo

    # 名字管理系统demo # 打印功能提示 print('欢迎使用名字管理系统v6.6.6') print('1:添加一个名字') print('2:删除一个名字') print('3:修改一个名字' ...

  7. 【SpringCloud】第二篇: 服务消费者(rest+ribbon)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  8. Linux编译安装opencv

    参考https://blog.csdn.net/huang826336127/article/details/78760885 一.下载opencv源码包 下载地址:https://opencv.or ...

  9. BZOJ 1565 NOI2009 植物大战僵尸 topo+最小割(最大权闭合子图)

    题目链接:https://www.luogu.org/problemnew/show/P2805(bzoj那个实在是有点小小的辣眼睛...我就把洛谷的丢出来吧...) 题意概述:给出一张有向图,这张有 ...

  10. Mininet实验 动态改变转发规则

    介绍 拓扑如下: 在该环境下,假设H1 ping H4,初始的路由规则是S1-S2-S5,一秒后,路由转发规则变为S1-S3-S5,再过一秒,规则变为S1-S4-S5,然后再回到最初的转发规则S1-S ...