题目大意:给定一个字符串,记X[i]为包含s[i]这个字符的所有子列是回文串的个数(注意是子列而不是子串),求出所有的X[i]*(i+1),然后异或起来作为返回结果

题解:

首先用容斥来想,如果当前枚举到i

那么答案就是

1、选i作为中间的字幕,(0, i-1)和(i+1, L)这两个区间相互匹配回文

2、直接选(0, i),(i+1, L)这两个区间相互匹配回文

3、直接选(0, i-1), (i, L)这两个区间相互回文匹配

然后我们发现后两种情况会有重叠情况

我们把这两种情况更细致的分一下,(0, i), (i+1,L)如果能匹配,那么必定要找到s[j] = s[i], j是属于(i+1, L)的

然后我们这样来做

令f[l][r]表示, 只用(l, r)区间就可以构成回文串的个数

令g[l][r]表示,用(0, l), (r, L)2个区间相互回文匹配构成的个数

然后没找到一对(i, j),乘一下f[i+1][j-1], g[i-1][j+1]即可

转移:

f[l][r] = f[l+1][r] + f[l][r-1] - (s[l] == s[r] ? 0 : f[l+1][r-1])

g[l][r] = g[l-1][r] + g[l][r+1] - (s[l] == s[r] ? 0 : s[l-1][r+1])

然后就可以做了

#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <typeinfo>
#include <fstream> using namespace std;
typedef long long LL;
const int maxn = ;
const int MOD = 1e9 + ;
LL F[maxn][maxn], G[maxn][maxn];
string S;
LL g(int l, int r){
if(l < || r >= S.length()) return ;
if(G[l][r]) return G[l][r];
G[l][r] = ((LL)g(l-, r) + g(l, r+) - (S[l] == S[r] ? : g(l-, r+)))%MOD;
return G[l][r];
} LL f(int l, int r){
if(l > r) return ;
if(l == r) return ;
if(F[l][r]) return F[l][r];
F[l][r] = ((LL)f(l+, r) + f(l, r-) - (S[l] == S[r] ? : f(l+, r-)))%MOD;
return F[l][r];
} class PalindromicSubseq {
public:
int solve(string s) {
memset(F, , sizeof(F));
memset(G, , sizeof(G));
S = s;
LL ans = ;
for(int i = ; i < s.length(); i++){
LL temp = ;
for(int j = ; j < s.length(); j++)
if(s[i] == s[j]){
int l = min(i, j), r = max(i, j);
(temp += (LL)f(l+, r-)*g(l-, r+)%MOD) %= MOD;
}
(temp += MOD) %= MOD;
(temp *= (LL)(i+)) %= MOD;
ans ^= temp;
}
return ans;
}
};

SRM708 div1 PalindromicSubseq(动态规划+容斥原理)的更多相关文章

  1. 【BZOJ1471】不相交路径 题解(拓扑排序+动态规划+容斥原理)

    题目描述 在有向无环图上给你两个起点和终点分别为$a,b,c,d$.问有几种路径方案使得能从$a$走到$b$的同时能从$c$走到$d$,且两个路径没有交点. $1\leq n\leq 200,1\le ...

  2. bzoj 4767 两双手 - 动态规划 - 容斥原理

    题目传送门 传送门I 传送门II 题目大意 一个无限大的棋盘上有一只马,设马在某个时刻的位置为$(x, y)$, 每次移动可以将马移动到$(x + A_x, y + A_y)$或者$(x + B_x, ...

  3. TopCoder SRM502 Div1 1000 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/SRM502-1000.html SRM502 Div1 1000 题意 从 [0,n-1] 中选择 k 个不同的 ...

  4. BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学

    原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...

  5. TC SRM498 Div1 1000PT(容斥原理+DP)

    [\(Description\)] 网格中每步可以走\((0,\cdots M_x,0\cdots M_y)\)中任意非零向量,有\(K\)种向量不能走,分别是\((r_1,r_1),(r_2,r_2 ...

  6. BZOJ4762 最小集合(动态规划+容斥原理)

    https://www.cnblogs.com/AwD-/p/6600650.html #include<iostream> #include<cstdio> #include ...

  7. 51Nod1634 刚体图 动态规划 容斥原理 排列组合

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1634.html 题目传送门 - 51Nod1634 题意 基准时间限制:1 秒 空间限制:13107 ...

  8. BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)

    显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...

  9. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

随机推荐

  1. reactor模式---事件触发模型

    Reactor这个词译成汉语还真没有什么合适的,很多地方叫反应器模式,但更多好像就直接叫reactor模式了,其实我觉着叫应答者模式更好理解一些.通过了解,这个模式更像一个侍卫,一直在等待你的召唤. ...

  2. Ajax知识总结

    一 AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法.AJAX 最大 ...

  3. django 面试题

    面试题1:migrate怎么判断哪些迁移脚本需要执行: 他会将代码中的迁移脚本和数据库中django_migrations中的迁移脚本进行对比,如果发现数据库中,没有这个迁移脚本,那么就会执行这个迁移 ...

  4. 继上一篇bootstrap框架(首页)弄的资讯页面

    还是和上一篇首页一样给出每一步的注解: 做的有点简单,但是,以后还是会加深的.毕竟是初学者嘛! <html lang="zh-cn">   <head>   ...

  5. Elasticsearch 常用API

    1.   Elasticsearch 常用API 1.1.数据输入与输出 1.1.1.Elasticsearch 文档   #在 Elasticsearch 中,术语 文档 有着特定的含义.它是指最顶 ...

  6. Flask初见

    Flask是一个使用 Python 编写的轻量级 Web 应用框架.其 WSIG工具箱采用 Werkzeug ,模板引擎则使用 Jinja2 .Flask使用 BSD 授权. Flask也被称为 “m ...

  7. R语言学习笔记(十七):data.table包中melt与dcast函数的使用

    melt函数可以将宽数据转化为长数据 dcast函数可以将长数据转化为宽数据 > DT = fread("melt_default.csv") > DT family_ ...

  8. 牛客暑假多校第五场A.gpa

    一.题意 给出你的N门课程的考试成绩和所占的机电数目.允许你放弃K门课的成绩,要求你的平均学分绩最高能达到多少. Kanade selected n courses in the university ...

  9. MVC4+EF 列表数据不能绑定

    最新准备使用.net 的mvc+Ef来写个项目,开始一切顺利,到了数据绑定时出现了问题. 我的mvc视图引擎是Razor,后台提取数据的是Linq来处理,发现不管怎么样都不能绑定列表数据,可以将后台的 ...

  10. 反向代理服务器——nginx

    一.概述 先来看百度百科的介绍: Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.其特点是占有内存少,并发能力强 ...