编辑距离问题

给定两个字符串S和T,对于T我们允许三种操作:
(1) 在任意位置添加任意字符
(2) 删除存在的任意字符
(3) 修改任意字符

问最少操作多少次可以把字符串T变成S?
例如: S=  “ABCF”   T = “DBFG”
那么我们可以
(1) 把D改为A
(2) 删掉G
(3) 加入C

所以答案是3。

输入

第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
输出
输入a和b的编辑距离
输入示例

kitten
sitting
输出示例

3
请选取你熟悉的语言,并在下面的代码框中完成你的程序,注意数据范围,最终结果会造成Int32溢出,这样会输出错误的答案。
不同语言如何处理输入输出,请查看下面的语言说明。
【分析】
对于两个字符串a和b,dp[i][j]记录a的前i个字符转换到b的前j个字符的最小编辑距离。那么很容易得到转移方程 dp[i][j] = min(dp[i][j], dp[i-1][j-1] + a[i-1] == b[j-1] ? 0 : 1)。对每个dp[i][j],我们考虑直接从dp[i-1][j]或dp[i][j-1]加一个字符,所以初始为dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + 1。对于dp[0][i]和dp[i][0],显然都等于i。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 1000000007
typedef long long ll;
using namespace std;
char a[];
char b[];
int dp[][];
int pre[][]; int main()
{
int i,j,len1,len2,last;
memset(dp,,sizeof(dp));
memset(pre,,sizeof(pre));
cin>>a>>b;
int n = strlen(a), m = strlen(b);
for(int i = ; i <= n; i ++) dp[i][] = i;
for(int i = ; i <= m; i ++) dp[][i] = i;
for(int i = ; i <= n; i ++)
{
for(int j = ; j <=m; j ++)
{
dp[i][j] = min(dp[i-][j], dp[i][j-]) + ;
dp[i][j] = min(dp[i][j], dp[i-][j-] + (a[i-] != b[j-]));
}
}
printf("%d\n", dp[n][m]);
return ;
}

51nod 编辑距离问题(动态规划)的更多相关文章

  1. CJOJ 1644 编辑距离 / Luogu 2758 编辑距离(动态规划)

    CJOJ 1644 编辑距离 / Luogu 2758 编辑距离(动态规划) Description 字符串是数据结构和计算机语言里很重要的数据类型,在计算机语言中,对于字符串我们有很多的操作定义,因 ...

  2. 51NOD 1183编辑距离(动态规划)

    >>点击进入原题测试<< 思路:这个题放在基础题,分值还是零分,好歹也给人家动态规划一点面子啊!刚开始写的想法是找到其最大公共字串,然后用两个字符串中最长字符串的长度减掉最大公 ...

  3. 编辑距离及其动态规划算法(Java代码)

    编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.一般情况下编辑操作包括: 将一个字符替换成另一个字符: 插入一个字符: 删除一个字 ...

  4. 算法笔记1 - 编辑距离及其动态规划算法(Java代码)

    转载请标注原链接:http://www.cnblogs.com/xczyd/p/3808035.html 编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个 ...

  5. 51nod1183 编辑距离【动态规划】

    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除 ...

  6. 51nod 简单的动态规划

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  7. 51nod--1183 编辑距离(动态规划)

    题目: 1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指 ...

  8. 文本相似度 余弦值相似度算法 VS L氏编辑距离(动态规划)

    设置n为字符串s的长度.("我是个小仙女") 设置m为字符串t的长度.("我不是个小仙女") 如果n等于0,返回m并退出.如果m等于0,返回n并退出.构造两个向 ...

  9. 【TOJ 1072】编辑距离(动态规划)

    描述 假设字符串的基本操作仅为:删除一个字符.插入一个字符和将一个字符修改成另一个字符这三种操作. 我们把进行了一次上述三种操作的任意一种操作称为进行了一步字符基本操作. 下面我们定义两个字符串的编辑 ...

随机推荐

  1. 获取Parameter参数值,方便调试使用

    #region #warning 调试使用,获取sql参数化,拼接出完整的sql语句,复制sql明文到mssql中运行 string debugSql = queryHelper.CommandTex ...

  2. [学习笔记]最小割之最小点权覆盖&&最大点权独立集

    最小点权覆盖 给出一个二分图,每个点有一个非负点权 要求选出一些点构成一个覆盖,问点权最小是多少 建模: S到左部点,容量为点权 右部点到T,容量为点权 左部点到右部点的边,容量inf 求最小割即可. ...

  3. ng 构建

    1.ng 构建和部署 构建:编译和合并ng build 部署:复制dist里面的文件到服务器 2.多环境的支持 配置环境package.json "scripts": { &quo ...

  4. input 单选按钮radio 取消选中(转载)

    input单选按钮: 在radio按钮中添加属性tag  0代表未被选中 HTML代码: <input name="rdo1" value="AA" ty ...

  5. Java并发(8)- 读写锁中的性能之王:StampedLock

    在上一篇<你真的懂ReentrantReadWriteLock吗?>中我给大家留了一个引子,一个更高效同时可以避免写饥饿的读写锁---StampedLock.StampedLock实现了不 ...

  6. struts2学习笔记(二)

    一. 国际化的目标 1). 如何配置国际化资源文件 I. Action 范围资源文件: 在Action类文件所在的路径建立名为 ActionName_language_country.properti ...

  7. saltstack入门至放弃之salt安装部署

    学习了一段时间的saltstack,是时候记录下了.友提:学习环境是两台centos_7.2_x64机器 系统初始化: 两台机器执行以下脚本即可(友提:两台服务器的主机名配置在/etc/hosts中, ...

  8. bzoj1575 [Usaco2009 Jan]气象牛Baric

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1575 [题解] 动态规划,令f[i,j]表示前i个选了j个,且第i个必选的最小值. 转移就枚 ...

  9. codevs1163访问艺术馆 树形dp

    算裸的树形dp吧 回来复习一波 #include<cstdio> #include<cstring> #include<algorithm> #include< ...

  10. CF502C The Phone Number

    C. The Phone Number time limit per test 1 second memory limit per test 256 megabytes     Mrs. Smith ...