题目描述

小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。

为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段 表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。

施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高 度可以比原来大—修建,也可以比原来小—拆除,甚至可以保持不变—建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?

输入输出格式

输入格式:

第一行两个正整数N,M

接下来M行,每行两个正整数Xi,Yi

输出格式:

M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋

输入输出样例

输入样例#1:
复制

3 4
2 4
3 6
1 1000000000
1 1
输出样例#1: 复制

1
1
1
2

说明

对于所有的数据1<=Xi<=N,1<=Yi<=10^9

N,M<=100000

线段树博大精深。

y/x作为每个点的值,求最靠左的极长上升子序列,线段树维护。

考虑如何合并两个区间,设c[x]为x区间内的子序列长度。显然是左边的极长上升子序列选完,然后右边选出第一个数大于max{左边所有数(也就是左边子序列末尾)}的极长上升子序列。

至于怎么求一个区间内第一个数大于某个值的子序列长度,再用一个函数解决,que(x,k)表示x节点的区间内大于k的极长上升子序列的长度,递归查询即可。

实现起来会发现是c[]和find()的相互利用,比较巧妙。

因为修改会带上查询,所以复杂度$O(n\log^2 n)$

另外这题数据类型是实数,会发现实数比较的时候如果完全不考虑精度问题(直接用>=之类的运算)的话不存在问题,而如果考虑了之后eps设宽了反而拿不到分,eps设到1e-10才能拿到分。

仿佛又看到了NOIP2017D2T1的惨败。

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define ls (x<<1)
#define rs (ls|1)
using namespace std; const int N=; const double eps=1e-;
int n,m,x,c[N<<]; double y,mx[N<<]; int que(int x,int L,int R,double k){
if (k-mx[x]>-eps) return ;
if (L==R) return c[x];
int mid=(L+R)>>;
if (k-mx[ls]>-eps) return que(rs,mid+,R,k);
else return que(ls,L,mid,k)+c[x]-c[ls];
} void mdf(int x,int L,int R,int pos,double k){
if (L==R){ mx[x]=k; if (fabs(k)<eps) c[x]=; else c[x]=; return; }
int mid=(L+R)>>;
if (pos<=mid) mdf(ls,L,mid,pos,k); else mdf(rs,mid+,R,pos,k);
mx[x]=max(mx[ls],mx[rs]); c[x]=c[ls]+que(rs,mid+,R,mx[ls]);
} int main(){
scanf("%d%d",&n,&m);
for (int i=; i<=m; i++) scanf("%d%lf",&x,&y),mdf(,,n,x,y/x),printf("%d\n",c[]);
return ;
}

[Luogu P4198]楼房重建(线段树)的更多相关文章

  1. luogu P4198 楼房重建——线段树

    题目大意: 小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线 ...

  2. 洛谷P4198 楼房重建(线段树)

    题意 题目链接 Sol 别问我为什么发两遍 就是为了骗访问量 这个题的线段树做法,,妙的很 首先一个显然的结论:位置\(i\)能被看到当且仅当\(\frac{H_k}{k} < \frac{H_ ...

  3. Luogu P4198 楼房重建 (李超线段树)

    题目 传送门 题解 首先转化成到(0,0)(0,0)(0,0)的斜率. 那么就是求多少个点是前缀最大值. 做法是线段树,用gao(i,x)gao(i,x)gao(i,x)表示在iii区间内,之前最大值 ...

  4. Luogu P4198 楼房重建 分块 or 线段树

    思路:分块 提交:2次(第一次的求解有问题) 题解: 设块长为$T$,我们开$N/T$个单调栈,维护每一块的上升斜率. 修改时暴力重构整个块,$O(T)$ 求解时记录一个最大斜率$lst$,然后块内二 ...

  5. luogu题解P4198楼房重建--线段树神操作

    题目链接 https://www.luogu.org/problemnew/show/P4198 分析 一句话题意,一条数轴上有若干楼房,坐标为\(xi\)的楼房有高度\(hi\),那么它的斜率为\( ...

  6. [BZOJ29957] 楼房重建 - 线段树

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3294  Solved: 1554[Submit][Status][Discus ...

  7. bzoj 2957: 楼房重建 线段树

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 小A的楼房外有一大片施 ...

  8. 【题解】Luogu P4198 楼房重建

    原题传送门 根据斜率来建线段树,线段树维护区间最大斜率以及区间内能看见的楼房的数量(不考虑其他地方的原因,两个节点合并时再考虑) 细节见程序 #include <bits/stdc++.h> ...

  9. bzoj 2957: 楼房重建 ——线段树

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

随机推荐

  1. innodb_force_recovery

    Warning Before using innodb_force_recovery ensure that you have a backup copy of your database in ca ...

  2. Ubuntu 编译Webkit --gtk

    转载自:http://www.linuxidc.com/Linux/2011-10/44809.htm webkit是一个浏览器内核,google的chrome就是基于它的,下面介绍一下如何在Ubun ...

  3. java 身份证15位转18位

    /** * 根据身份证号获取性别 * * @param pid * 身份证号 * @return 性别 F为女M为男 */ public static String getSexByPid(Strin ...

  4. [洛谷P1040] 加分二叉树

    洛谷题目链接:加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di ...

  5. [洛谷P3501] [POI2010]ANT-Antisymmetry

    洛谷题目链接:[POI2010]ANT-Antisymmetry 题目描述 Byteasar studies certain strings of zeroes and ones. Let be su ...

  6. C#网络编程基本字段---IPAddress、IPEndPoint

    命名空间: using System.Net; PAddress类提供了对IP地址的转换.处理等功能.其Parse方法可将IP地址字符串转换为IPAddress实例. 如:IPAddress ip = ...

  7. spring boot修改内置容器tomcat的服务端口

    方式一 在spring boot的web 工程中,可以使用内置的web container.有时需要修改服务端口,可以通过配置类和@Configuration注解来完成. // MyConfigura ...

  8. JAVA中List<Long> 转long[]的方法

    之前每次都是通过循环去写,感觉代码不够优雅,百度了一下,查到如下的写法,先记下来: List<Long> list = new ArrayList<Long>(); list. ...

  9. final 的作用

    1.修饰类 类不能被继承 2.修饰方法 目的有二: 1)禁止子类重写该方法 2)执行效率(JVM相关的东西,不用太关注) 3.修饰变量 final修饰原始类型的变量,该变量不能被修改 final修饰引 ...

  10. css划斜线

    http://stackoverflow.com/questions/18012420/draw-diagonal-lines-in-div-background-with-css