poj2411 Mondriaan's Dream[简单状压dp]
$11*11$格子板上铺$1*2$地砖方案。以前做过?权当复习算了,毕竟以前学都是浅尝辄止的。。常规题,注意两个条件:上一行铺竖着的则这一行同一位一定要铺上竖的,这一行单独铺横的要求枚举集合中出现连续偶数个的1,预处理一下即可。注意数据及时reset。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=;
ll f[N][<<N-];
int n,m,ful,g[<<N-]; int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
for(register int i=;i<(<<);++i){
int cnt=;
for(register int j=;j<;++j){
if(!((<<j)&i)){if(cnt&)break;cnt=;}
else ++cnt;
}
if(!(cnt&))g[i]=;
}
while(read(n),read(m),n){
if((n*m)&){printf("0\n");continue;}
f[][ful]=;ful=(<<m)-;f[][ful]=;
for(register int i=;i<=n;++i){
for(register int j=;j<=ful;++j){
f[i][j]=;
for(register int k=;k<=ful;++k)if(((j|k)==ful)&&(g[j&k])){
f[i][j]+=f[i-][k];
}
}
}
printf("%lld\n",f[n][ful]);
}
return ;
}
UPD:以前个人理解这个$0/1$状态设计有问题。应当是$f[i][S]$表示的是当前推导了第$i$行,状态$S$,对应二进制位$1$的表示这一格填了,$0$表示还没填,有$0$的这种情况下是留作下一行使用的(也就是可以由现在没填的情况推向下一行同一列填好的情况),说“表示放下竖着摆的砖的上半部分”的说法是不确切的。这样,用上述正确的状态定义就可以方便解决绝大多数铺砖类题目。再比如:
如果有的格子不准铺,有多少种铺法?最多铺多少个?用上面的定义,可以在当前状态$S$下使用DFS推导出下一行的所有合法方案并更新,不能铺的地方也用$1$来表示。当然,也可以使用轮廓线DP来推,但是好像会被dfs吊打。。但是最好不要用暴力枚举来推,有大量冗余状态。
详细可以见这道题目题解。poj1038 Bugs Integrated, Inc.[状压DP]
poj2411 Mondriaan's Dream[简单状压dp]的更多相关文章
- [Poj2411]Mondriaan's Dream(状压dp)(插头dp)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 18096 Accepted: 103 ...
- POJ2411 Mondriaan's Dream 【状压dp】
没错,这道题又是我从LZL里的博客里剽过来的,他的题真不错,真香. 题目链接:http://poj.org/problem?id=2411 题目大意:给一个n * m的矩形, 要求用 1 * 2的小方 ...
- poj2411 Mondriaan's Dream【状压DP】
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 20822 Accepted: 117 ...
- ☆ [POJ2411] Mondriaan's Dream 「状压DP」
传送门 >Here< 题意:用1*2的砖块铺满n*m的地板有几种方案 思路分析 状压经典题! 我们以$f[i][j]$作为状态,表示第i行之前全部填完并且第i行状态为j(状压)时的方案数. ...
- poj2411 Mondriaan's Dream (状压dp+多米诺骨牌问题)
这道题的解析这个博客写得很好 https://blog.csdn.net/shiwei408/article/details/8821853 大致意思就是我们可以只处理两行之间的关系,然后通过这两个关 ...
- POJ 题目2411 Mondriaan's Dream(状压DP)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 13519 Accepted: 787 ...
- POJ 2411 Mondriaan's Dream 【状压Dp】 By cellur925
题目传送门 这道题暑假做的时候太模糊了,以前的那篇题解大家就别看了==.今天再复习状压感觉自己当时在写些什么鸭.... 题目大意:给你一个\(n\)*\(m\)的棋盘和许多\(1*2\)的骨牌,骨牌可 ...
- [poj 2411]Mondriaan's Dream (状压dp)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 18903 Accepted: 10779 D ...
- POJ 2411 Mondriaan's Dream/[二进制状压DP]
题目链接[http://poj.org/problem?id=2411] 题意:给出一个h*w的矩形1<=h,w<=11.用1*2和2*1的小矩形去填满这个h*w的矩形,问有多少种方法? ...
随机推荐
- 011_Eclipse中使用HDFSFileSystemAPI事例介绍
需求 1.文件操作 1)上传本地文件到HDFS 2)读取文件 3)在hadoopfs中新建文件,并写入 4)重命名文件 5)删除hadoopfs上的文件 2.目录操作 1)读取某个目录下的所有文件 2 ...
- mybatis使用注意的细节
1.mybatis对sql执行后会对结果进行封装,如果没有返回任何记录,只是封装后的对象没有值,而对象并不为空null: (这个问题疏忽坑了两次,在对返回数组结果进行判断的时候,我用的if(Array ...
- 用blastn比对自己建立的数据库
自己感兴趣的一些序列作为数据库,然后用blastn把测序的read比对到自己建立的数据库中. 1.用fasta文件创建blast数据库 makeblastdb -in input_file -inpu ...
- GIT截图
GIT截图 今天首次成功用了GIT上传了JAVA代码,感觉一下次就能上传这么多代码,确实比在网页上方便.自己一开始根本摸不着头脑,不知道怎样使用GIT软件,但在学姐博客的指导下,在同学热情且耐心地指导 ...
- mongodb GridFS django FileFiled 默认 widget 只有一个文件上传框显示不了字段内容,重写widget
首先,定位到:FileFiled 默认 widget 源码:mongoadmin包options.py中,如下: # Defaults for formfield_overrides. ModelAd ...
- 分布式任务调度平台XXL-Job集群版搭建
如果集群: 保存后: 启动两个 job 第二个job的配置: # web port server.port=8082 # log config logging.config=classpath:log ...
- Spark-运行时架构
Spark运行时架构 在分布式环境下,Spark集群采用的时主/从结构.在一个Spark集群中,有一个节点负责中央协调,调度各个分布式工作节点.这个中央协调节点被称为驱动器(Driver),与之对应的 ...
- HDU 4004 The Frog's Games(2011年大连网络赛 D 二分+贪心)
其实这个题呢,大白书上面有经典解法 题意是青蛙要跳过长为L的河,河上有n块石头,青蛙最多只能跳m次且只能跳到石头或者对面.问你青蛙可以跳的最远距离的最小值是多大 典型的最大值最小化问题,解法就是贪心 ...
- BZOJ 4154 kd-tree dfs序 + 二维空间的区间(矩阵)更新单点查找
一开始没思路 感觉像是一个树形dp 然而不会 然后看了一眼题解就明白了 一个点的子树 用dfs序表示肯定是一个连续的区间 并且由于有子树的距离限制 可以转化为一个深度的区间 于是每个点都会有一个在二维 ...
- spring启动加载类,手动加载bean
方法一: public final class Assembler implements BeanFactoryPostProcessor { private static ConfigurableL ...