Description

题面

Solution

生命值范围比较小,首先维护每一个人在每个血量的概率,从而算出生存的概率,设为 \(a[i]\)

询问时,只需要考虑生存的人数,可以 \(DP\)

设 \(g[i][j]\) 表示前 \(i\) 个人活了 \(j\) 个的概率

\(g[i][j]=g[i-1][j-1]*a[i]+g[i-1][j]*(1-a[i])\)

那么考虑每一个人时,我们对其他人做这个 \(DP\) 就行了,可以做 \(O(C*n^3)\)

实际上这是个生成函数 \((a[i]*x+1-a[i])\) ,最终求出的是每一个人的乘积,除掉 \(i\) 这个人的就是我们暴力求出来的 \(DP\) 数组

这样的话是可逆的,我们减去 \((1-a[i])\) 的项,剩下的就都是 \(a[i]\) 的项了,逆推一下即可

#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=205,M=1005,mod=998244353;
inline int qm(int x,int k){
int sum=1;
while(k){
if(k&1)sum=1ll*sum*x%mod;
x=1ll*x*x%mod;k>>=1;
}
return sum;
}
int f[N][M],n,m[N],Q,op,x,p,q,h[N],a[N],tot,c[N],g[N][N],inv[N],res[N];
inline void Modify(){
gi(x);gi(p);gi(q);
p=1ll*p*qm(q,mod-2)%mod;q=(1-p+mod)%mod;
h[0]=(f[x][0]+1ll*f[x][1]*p)%mod;
for(int i=m[x];i>=1;i--)h[i]=(1ll*f[x][i+1]*p+1ll*f[x][i]*q)%mod;
for(int i=m[x];i>=0;i--)f[x][i]=h[i],h[i]=0;
}
inline void solve(){
gi(tot);
for(int i=1;i<=tot;i++){
gi(x);
a[i]=(1-f[x][0]+mod)%mod;
}
memset(g,0,sizeof(g));
g[0][0]=1;
for(int i=1;i<=tot;i++){
g[i][0]=g[i-1][0]*(1-a[i]+mod)%mod;
for(int j=0;j<=i;j++)
g[i][j]=(1ll*g[i-1][j-1]*a[i]+1ll*g[i-1][j]*(1-a[i]+mod))%mod;
}
for(int i=1;i<=tot;i++){
int I=qm(a[i],mod-2),ans=0;
for(int j=1;j<=tot;j++)h[j]=g[tot][j];
for(int j=tot;j>=1;j--){
ans=(ans+1ll*I*h[j]%mod*inv[j])%mod;
h[j-1]=(h[j-1]-1ll*h[j]*(1-a[i]+mod)%mod*I)%mod;
h[j]=0;
}
if(ans<0)ans+=mod;
ans=1ll*ans*a[i]%mod;
printf("%d ",ans);
}
puts("");
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
for(int i=1;i<N;i++)inv[i]=qm(i,mod-2);
cin>>n;
for(int i=1;i<=n;i++)gi(m[i]),f[i][m[i]]=1;
cin>>Q;
while(Q--){
gi(op);
if(op==0)Modify();
else solve();
}
for(int i=1;i<=n;i++){
int ans=0;
for(int j=1;j<=m[i];j++)ans=(ans+1ll*f[i][j]*j)%mod;
printf("%d ",ans);
}
return 0;
}

bzoj 5340: [Ctsc2018]假面的更多相关文章

  1. BZOJ5340: [Ctsc2018]假面

    BZOJ5340: [Ctsc2018]假面 https://lydsy.com/JudgeOnline/problem.php?id=5340 分析: 背包,只需要求\(g_{i,j}\)表示强制活 ...

  2. [BZOJ]1064: [Noi2008]假面舞会

    题目大意:n个人,k种假面,每人戴一种,戴第i种的可以看见第i+1种,戴第k种的可以看见第1种,给出m条关系表示一个人可以看到另一个人,问k可能的最大值和最小值.(n<=100,000,m< ...

  3. BZOJ5340 & 洛谷4564 & LOJ2552:[CTSC2018]假面——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5340 https://www.luogu.org/problemnew/show/P4564 ht ...

  4. [Bzoj]5343: [Ctsc2018]混合果汁

    5343: [Ctsc2018]混合果汁 题目描述 小 R 热衷于做黑暗料理,尤其是混合果汁. 商店里有 \(n\) 种果汁,编号为 \(0,1,\cdots,n-1\) .\(i\) 号果汁的美味度 ...

  5. [bzoj 1064][NOI2008]假面舞会(dfs判断环)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1064 分析: 如果a看到b,则a->b 那么: 1.如果图中有环,则说明这个环的 ...

  6. [CTSC2018] 假面 | 期望 DP

    题目链接 LOJ 2552 Luogu P4564 考场上这道题我先是写了个70分暴力,然后发现似乎可以NTT,然鹅问题是--我没学过NTT,遂脑补之,脑补出来了,下午出成绩一看,卡成暴力分(70)- ...

  7. bzoj 1064 noi2008 假面舞会题解

    莫名其妙的变成了我们的noip互测题... 其实这题思想还是比较简单的,只是分类不好分而已 其实就是一个dfs的事 首先,非常明显,原题目中的所有关系可以抽象成一个图(这是...显而易见的吧...) ...

  8. BZOJ 1064: [Noi2008]假面舞会(dfs + 图论好题!)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1064 题意: 思路: 考虑以下几种情况: ①无环并且是树: 无环的话就是树结构了,树结构的话想一下就 ...

  9. BZOJ5340: [Ctsc2018]假面【概率+期望】【思维】

    LINK 思路 首先考虑减血,直接一个dp做过去,这个部分分不难拿 然后是\(op=1\)的部分 首先因为要知道每个人被打的概率,所以需要算出这个人活着的时候有多少个人活着时概率是什么 那么用\(g_ ...

随机推荐

  1. 十、Node.js-url模块

    下面使用之前提到过的note交互模式(可以在cmd直接执行js代码)进行学习url模块 跳出note模式同样是Ctrl+C(两次) 学习url模块主要是要掌握url模块的方法: url.parse() ...

  2. 修改Tomcat主目录

    在默认安装后,tomcat的主目录是webapps/root目录,如果我们想改变tomcat的主目录的话可以这样做: 1 %TOMCAT_HOME%/webapps/下直接创建,这种方法有一个缺点,就 ...

  3. day02.2-列表内置方法

    列表——list的定义:test = [1,12,9,"age",["zizai","jiapu"],"alex"] 特 ...

  4. IO相关3(string流)

    sstream 头文件定义了三个类型来支持内存 IO,这些类型可以向 string 写入数据,从 string 读取数据,就像 string 是一个 IO 流一样. istringstream 从 s ...

  5. python 中文件夹的操作

    文件有两个管家属性:路径和文件名. 路径指明了文件在磁盘的位置,文件名原点的后面部分称为扩展名(后缀),它指明了文件的类型. 一:文件夹操作 Python中os 模块可以处理文件夹 1,当前工作目录 ...

  6. mtd-util

    1.1.4.1. mtd-util简介 mtd-util,即mtd的utilities,是mtd相关的很多工具的总称,包括常用的mtdinfo,flash_erase, flash_eraseall, ...

  7. Qt 学习之路 2(61):使用 SAX 处理 XML

    Qt 学习之路 2(61):使用 SAX 处理 XML  豆子  2013年8月13日  Qt 学习之路 2  没有评论 前面两章我们介绍了使用流和 DOM 的方式处理 XML 的相关内容,本章将介绍 ...

  8. SprimgMVC学习笔记(十一)—— 解决静态资源无法被springmvc处理

    方法一:在springmvc.xml中配置 <!-- 解决静态资源无法被springMVC处理的问题 --> <mvc:default-servlet-handler /> 方 ...

  9. [HNOI2014]抄卡组

    [Luogu3234] [LOJ2208] 题解及代码 锻炼哈希码力的一道题 , 具体细节见代码 #include<cstdio> #include<cstring> #inc ...

  10. Collectors.groupingBy分组后的排序问题

    默认groupingBy代码里会生成一个HashMap(hashMap是无序的,put的顺序与get的顺序不一致) HashMap是无序的,HashMap在put的时候是根据key的hashcode进 ...