(原创)sklearn中 F1-micro 与 F1-macro区别和计算原理
最近在使用sklearn做分类时候,用到metrics中的评价函数,其中有一个非常重要的评价函数是F1值,(关于这个值的原理自行google或者百度)
在sklearn中的计算F1的函数为 f1_score ,其中有一个参数average用来控制F1的计算方式,今天我们就说说当参数取micro和macro时候的区别
1、F1公式描述:
F1-score: 2*(P*R)/(P+R)
2、 f1_score中关于参数average的用法描述:
'micro':Calculate metrics globally by counting the total true positives, false negatives and false positives.
'micro':通过先计算总体的TP,FN和FP的数量,再计算F1
'macro':Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
'macro':分布计算每个类别的F1,然后做平均(各类别F1的权重相同)
3、初步理解
通过参数用法描述,想必大家从字面层次也能理解他是什么意思,micro就是先计算所有的TP,FN , FP的个数后,然后再利上文提到公式计算出F1
macro其实就是先计算出每个类别的F1值,然后去平均,比如下面多分类问题,总共有1,2,3,4这4个类别,我们可以先算出1的F1,2的F1,3的F1,4的F1,然后再取平均(F1+F2+F3+4)/4
y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4]
y_pred = [1, 1, 1, 0, 0, 2, 2, 3, 3, 3, 4, 3, 4, 3]
4、进一步理解
我们还是以上面的例子为例说明sklearn中是如何计算micro 和 macro的:
micro计算原理
首先计算总TP值,这个很好就算,就是数一数上面有多少个类别被正确分类,比如1这个类别有3个分正确,2有2个,3有2个,4有1个,那TP=3+2+2+1=8
其次计算总FP值,简单的说就是不属于某一个类别的元数被分到这个类别的数量,比如上面不属于4类的元素被分到4的有1个

如果还比较迷糊,我们在计算时候可以把4保留,其他全改成0,就可以更加清楚地看出4类别下面的FP数量了,其实这个原理就是 One-vs-All (OvA),把4看成正类,其他看出负类

同理我们可以再计算FN的数量
| 1类 | 2类 | 3类 | 4类 | 总数 | |
| TP | 3 | 2 | 2 | 1 | 8 |
| FP | 0 | 0 | 3 | 1 | 4 |
| FN | 2 | 2 | 1 | 1 | 6 |
所以micro的 精确度P 为 TP/(TP+FP)=8/(8+4)=0.666 召回率R TP/(TP+FN)=8/(8+6)=0.571 所以F1-micro的值为:0.6153
可以用sklearn来核对,把average设置成micro
y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4]
y_pred = [1, 1, 1, 0, 0, 2, 2, 3, 3, 3, 4, 3, 4, 3]
print(f1_score(y_true,y_pred,labels=[1,2,3,4],average='micro'))
#>>> 0.615384615385
计算macro
macro先要计算每一个类的F1,有了上面那个表,计算各个类的F1就很容易了,比如1类,它的精确率P=3/(3+0)=1 召回率R=3/(3+2)=0.6 F1=2*(1*0.5)/1.5=0.75
可以sklearn,来计算核对,把average设置成macro
#average=None,取出每一类的P,R,F1值
p_class, r_class, f_class, support_micro=precision_recall_fscore_support(y_true=y_true, y_pred=y_pred, labels=[1, 2, 3, 4], average=None)
print('各类单独F1:',f_class)
print('各类F1取平均:',f_class.mean())
print(f1_score(y_true,y_pred,labels=[1,2,3,4],average='macro'))
#>>>各类单独F1: [ 0.75 0.66666667 0.5 0.5 ]
#>>>各类F1取平均: 0.604166666667
#>>>0.604166666667
如有装载,请注明出处,谢谢

(原创)sklearn中 F1-micro 与 F1-macro区别和计算原理的更多相关文章
- sklearn中的predict与predict_proba的区别(得到各条记录每个标签的概率(支持度))
假定在一个k分类问题中,测试集中共有n个样本.则: predict返回的是一个大小为n的一维数组,一维数组中的第i个值为模型预测第i个预测样本的标签: predict_proba返回的是一个n行k列的 ...
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- sklearn中的模型评估-构建评估函数
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scor ...
- sklearn中的metrics模块中的Classification metrics
metrics是sklearn用来做模型评估的重要模块,提供了各种评估度量,现在自己整理如下: 一.通用的用法:Common cases: predefined values 1.1 sklearn官 ...
- sklearn 中的交叉验证
sklearn中的交叉验证(Cross-Validation) sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的 ...
- [原创]VS2010中创建动态链接库及其调用
[原创]VS2010中创建动态链接库及其调用 一.创建动态链接库 在VS2010中创建动态链接库的步骤如下: 1)生成->编译->生成MyDll 二.调用 当调用DLL中的方法,程序编译产 ...
- sklearn中的Pipeline
在将sklearn中的模型持久化时,使用sklearn.pipeline.Pipeline(steps, memory=None)将各个步骤串联起来可以很方便地保存模型. 例如,首先对数据进行了PCA ...
- Sklearn中的回归和分类算法
一.sklearn中自带的回归算法 1. 算法 来自:https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完 ...
- 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...
随机推荐
- windows启动redis服务
参考:https://www.cnblogs.com/M-LittleBird/p/5902850.html 使用python的pip install redis以后还需要下载安装redis安装文件才 ...
- Jmeter接口测试常见的乱码问题三种解决方法
使用Jmeter时经常遇到中文乱码问题,下面总结三种常用的解决方式. 1. 2.在Jmeter安装文件bin中找到jmeter.properties,打开jmeter.properties,搜索“IS ...
- DECODE 与CASE WHEN 的比较以及用法
1.DECODE 只有Oracle 才有,其它数据库不支持; 2.CASE WHEN的用法, Oracle.SQL Server. MySQL 都支持; 3.DECODE 只能用做相等判断,但是可以配 ...
- decimal数据类型
DECIMAL(N,M)中M是小数部分的位数,若插入的值未指定小数部分或者小数部分不足M位则会自动补到M位小数,若插入的值小数部分超过了M为则会发生截断,截取前M位小数. N是整数部分加小数部分的总长 ...
- Ajax提交数据的data序列化数据提交即可
jQuery.ajax({ url: "<s:url value="/contractinfo/finanContractInfoMgrAction!saveOrMod.ac ...
- docker从零开始网络(六)Macvlan
使用Macvlan网络 某些应用程序,尤其是遗留应用程序或监视网络流量的应用程序,希望直接连接到物理网络.在这种情况下,您可以使用macvlan网络驱动程序为每个容器的虚拟网络接口分配MAC地址,使其 ...
- poj 2826(好坑,线段相交问题)
An Easy Problem?! Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11576 Accepted: 176 ...
- 2017中国大学生程序设计竞赛 - 女生专场A【模拟】
A HDU - 6023 [题意]:求AC题数和总时长. [分析]:模拟.设置标记数组记录AC与否,再设置错题数组记录错的次数.罚时罚在该题上,该题没AC则不计入总时间,AC则计入.已经AC的题不用再 ...
- G - Rescue 【地图型BFS+优先队列(有障碍物)】
Angel was caught by the MOLIGPY! He was put in prison by Moligpy. The prison is described as a N * M ...
- python3 base64解码出现TypeError:Incorrect padding
今天在解决爬虫对加密参数的分析时,需要使用到base64解码.但是过程中出现了TypeError:Incorrect padding的错误提示.以下是解决方法,以便查阅. 其实正常使用base64是不 ...