最近在使用sklearn做分类时候,用到metrics中的评价函数,其中有一个非常重要的评价函数是F1值,(关于这个值的原理自行google或者百度)

在sklearn中的计算F1的函数为 f1_score ,其中有一个参数average用来控制F1的计算方式,今天我们就说说当参数取micromacro时候的区别

1、F1公式描述:

  F1-score:    2*(P*R)/(P+R)


                准确率(P): TP/ (TP+FP) 
                召回率(R): TP(TP + FN)
 
对于数据测试结果有下面4种情况:
真阳性(TP): 预测为正, 实际也为正
假阳性(FP): 预测为正, 实际为负
假阴性(FN): 预测为负,实际为正
真阴性(TN): 预测为负, 实际也为负

2、 f1_score中关于参数average的用法描述:

'micro':Calculate metrics globally by counting the total true positives, false negatives and false positives.

'micro':通过先计算总体的TP,FN和FP的数量,再计算F1

'macro':Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

'macro':分布计算每个类别的F1,然后做平均(各类别F1的权重相同)

3、初步理解

通过参数用法描述,想必大家从字面层次也能理解他是什么意思,micro就是先计算所有的TP,FN , FP的个数后,然后再利上文提到公式计算出F1

macro其实就是先计算出每个类别的F1值,然后去平均,比如下面多分类问题,总共有1,2,3,4这4个类别,我们可以先算出1的F1,2的F1,3的F1,4的F1,然后再取平均(F1+F2+F3+4)/4

    y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4]
      y_pred = [1, 1, 1, 0, 0, 2, 2, 3, 3, 3, 4, 3, 4, 3]

4、进一步理解

  我们还是以上面的例子为例说明sklearn中是如何计算micro 和 macro的:


  micro计算原理

  首先计算总TP值,这个很好就算,就是数一数上面有多少个类别被正确分类,比如1这个类别有3个分正确,2有2个,3有2个,4有1个,那TP=3+2+2+1=8

其次计算总FP值,简单的说就是不属于某一个类别的元数被分到这个类别的数量,比如上面不属于4类的元素被分到4的有1个

如果还比较迷糊,我们在计算时候可以把4保留,其他全改成0,就可以更加清楚地看出4类别下面的FP数量了,其实这个原理就是 One-vs-All (OvA),把4看成正类,其他看出负类

同理我们可以再计算FN的数量

  1类 2类 3类 4类 总数
TP 3 2 2 1 8
FP 0 0 3 1 4
FN 2 2 1 1 6

所以micro的 精确度P 为 TP/(TP+FP)=8/(8+4)=0.666    召回率R TP/(TP+FN)=8/(8+6)=0.571   所以F1-micro的值为:0.6153

可以用sklearn来核对,把average设置成micro

y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4]
y_pred = [1, 1, 1, 0, 0, 2, 2, 3, 3, 3, 4, 3, 4, 3]
print(f1_score(y_true,y_pred,labels=[1,2,3,4],average='micro'))
#>>> 0.615384615385

计算macro

macro先要计算每一个类的F1,有了上面那个表,计算各个类的F1就很容易了,比如1类,它的精确率P=3/(3+0)=1  召回率R=3/(3+2)=0.6  F1=2*(1*0.5)/1.5=0.75

可以sklearn,来计算核对,把average设置成macro

#average=None,取出每一类的P,R,F1值
p_class, r_class, f_class, support_micro=precision_recall_fscore_support(y_true=y_true, y_pred=y_pred, labels=[1, 2, 3, 4], average=None)
print('各类单独F1:',f_class)
print('各类F1取平均:',f_class.mean())
print(f1_score(y_true,y_pred,labels=[1,2,3,4],average='macro'))
#>>>各类单独F1: [ 0.75 0.66666667 0.5 0.5 ]
#>>>各类F1取平均: 0.604166666667
#>>>0.604166666667

如有装载,请注明出处,谢谢

(原创)sklearn中 F1-micro 与 F1-macro区别和计算原理的更多相关文章

  1. sklearn中的predict与predict_proba的区别(得到各条记录每个标签的概率(支持度))

    假定在一个k分类问题中,测试集中共有n个样本.则: predict返回的是一个大小为n的一维数组,一维数组中的第i个值为模型预测第i个预测样本的标签: predict_proba返回的是一个n行k列的 ...

  2. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  3. sklearn中的模型评估-构建评估函数

    1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scor ...

  4. sklearn中的metrics模块中的Classification metrics

    metrics是sklearn用来做模型评估的重要模块,提供了各种评估度量,现在自己整理如下: 一.通用的用法:Common cases: predefined values 1.1 sklearn官 ...

  5. sklearn 中的交叉验证

    sklearn中的交叉验证(Cross-Validation) sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的 ...

  6. [原创]VS2010中创建动态链接库及其调用

    [原创]VS2010中创建动态链接库及其调用 一.创建动态链接库 在VS2010中创建动态链接库的步骤如下: 1)生成->编译->生成MyDll 二.调用 当调用DLL中的方法,程序编译产 ...

  7. sklearn中的Pipeline

    在将sklearn中的模型持久化时,使用sklearn.pipeline.Pipeline(steps, memory=None)将各个步骤串联起来可以很方便地保存模型. 例如,首先对数据进行了PCA ...

  8. Sklearn中的回归和分类算法

    一.sklearn中自带的回归算法 1. 算法 来自:https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完 ...

  9. 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示

    第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...

随机推荐

  1. camera摄像原理之二:色彩空间【转】

    转自:http://blog.csdn.net/ghostyu/article/details/7912854 对于sensor 来说,我们经常接触到的色彩空间的概念,主要是RGB , YUV这两种( ...

  2. vim 源码分析

    vim 源码分析 http://bbs.csdn.net/topics/230031469 Ver7.1  晕.看不明白很正常.  7.1已经很大了.  支持了太多东西. 代码行数那么多(源码压缩了都 ...

  3. Day 14 python 之 字符串练习

    一.字符串总结与练习 #! /usr/bin/env python # -*- coding: utf-8 -*- # __author__ = "DaChao" # Date: ...

  4. spring quartz job autowired 出错 null pointer

    什么情况下才能用autowired? 当当前类属于spring IOC容器管时候就可以,比如在applicationContext.xml里有定义 就是说在spring上下文里能够找到 但是比如qua ...

  5. /usr/bin/env: php: No such file or directory 【xunsearch demo项目体验】【已解决】

    出现这个问题的原因是/usr/local/bin 或 /usr/bin 下面没有php可执行文件 解决办法: 建立一条硬链接 ln /path/to/bin/php  /usr/local/bin/p ...

  6. 洛谷P3929 SAC E#1 - 一道神题 Sequence1【枚举】

    题目描述 小强很喜欢数列.有一天,他心血来潮,写下了一个数列. 阿米巴也很喜欢数列.但是他只喜欢其中一种:波动数列. 一个长度为n的波动数列满足对于任何i(1 <= i < n),均有: ...

  7. tarjan算法与无向图的连通性(割点,桥,双连通分量,缩点)

    基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分 ...

  8. 使用IIFE(立即执行函数)让变量私有化

    今天去看了一个GITHUB上的开源项目,在客户端JS的脚本编写的时候,代码中多次使用了IIFE. 一开始我是懵逼的,不知道这种函数的意义何在,小菜鸟嘛. 后面我去研究了一番.发现了它的主要作用就是:让 ...

  9. centos 7下查找大文件、大目录和常见文件查找操作

    根据园子 潇湘隐者的文章 <Linux如何查找大文件或目录总结>结合实际运维需要整理出常用命令 目标文件和目录查找主要使用 find 命令 结合 xargs (给命令传递参数的一个过滤器, ...

  10. 【堆】bzoj1293 [SCOI2009]生日礼物

    考虑poj3320尺取法的做法,与此题基本一样,但是此题的 位置 的范围到2^31 尺取法不可. 将每种珠子所在的位置排序. 每种珠子要维护一个指针,指到已经用到这个种类的哪个珠子. 所以尺取法用堆优 ...