BZOJ 4174 tty的求助 莫比乌斯反演
题目大意:求∑Nn=1∑Mm=1∑m−1k=0⌊nk+xm⌋ mod 998244353
如果n和m都已经确定了。如今要求这坨玩应:
∑m−1k=0⌊nk+xm⌋
=∑m−1k=0(⌊nk%m+xm⌋+nk−nk%mm)
=∑m−1k=0(⌊nk%m+xm⌋+nkm−nk%mm)
我们一项一项考虑
令d=gcd(n,m),那么有
∑m−1k=0⌊nk%m+xm⌋
=d∗∑md−1k=0⌊kd+xm⌋
=d∗(md∗x−x%mm+∑md−1k=0⌊kd+x%mm⌋)
=d∗(md∗x−x%mm+∑md−1k=0[kd+x%m≥m])
=d∗(x−x%md+⌊x%md⌋)
=d∗⌊xd⌋
∑m−1k=0nkm=nm∗m∗(m−1)2=n∗m−n2
∑m−1k=0nk%mm=d∗∑md−1k=0kdm=d2m∗(md−1)∗md2=m−d2
故答案为
∑Nn=1∑Mm=1(d∗⌊xd⌋+n∗m−n2−m−d2)
=12∗∑Nn=1∑Mm=1(2∗d∗⌊xd⌋+d+n∗m−n−m)
=12∗(S(N)∗S(M)−S(N)∗m−S(M)∗n+∑min(N,M)d=1(d+2∗d∗⌊xd⌋)∑min(⌊Nd⌋,⌊Md⌋)k=1μ(k)∗⌊Nd∗k⌋∗⌊Md∗k⌋)
当中S(n)=n∗(n+1)2
然后O(nlogn)枚举d和k就可以
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 500500
#define MOD 998244353
using namespace std;
int n,m,x;
long long ans;
int mu[M];
int prime[M],tot;
bool not_prime[M];
void Linear_Shaker()
{
int i,j;
mu[1]=1;
for(i=2;i<=500000;i++)
{
if(!not_prime[i])
{
prime[++tot]=i;
mu[i]=MOD-1;
}
for(j=1;prime[j]*i<=500000;j++)
{
not_prime[prime[j]*i]=true;
if(i%prime[j]==0)
{
mu[prime[j]*i]=0;
break;
}
mu[prime[j]*i]=(MOD-mu[i])%MOD;
}
}
}
long long Sum(long long n)
{
return (n*(n+1)>>1)%MOD;
}
int main()
{
int i,j;
cin>>n>>m>>x;
Linear_Shaker();
ans=((Sum(n)*Sum(m)-Sum(n)*m-Sum(m)*n)%MOD+MOD)%MOD;
if(n>m) swap(n,m);
for(i=1;i<=n;i++)
{
long long temp=i+x/i*i*2;
for(j=1;j*i<=n;j++)
(ans+=temp*mu[j]%MOD*(n/i/j)%MOD*(m/i/j)%MOD)%=MOD;
}
cout<<(ans*(MOD+1>>1)%MOD)<<endl;
return 0;
}
BZOJ 4174 tty的求助 莫比乌斯反演的更多相关文章
- 【bzoj4174】tty的求助 莫比乌斯反演
Description Input 输入仅有一行. 第一行仅有两个正整数N,M 和一个实数 x. Output 输出共1行,由亍结果过大,所以请输出上式对998244353 取模的结果. Sampl ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 1114 Number theory(莫比乌斯反演+预处理)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演
分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...
随机推荐
- servlet+forward和direct区别
Servlet:是用于 java 编写的服务器端程序,其使用 java servlet API,当客户机发送请求到服务器时,服务器可以将请求信息发送给 servlet,并让 servlet 建立起服务 ...
- dubbo消费方超时处理
在我们分布式系统中,远程调用可能随时会出现调用超时,然后抛异常 在dubbo内部,默认设置的是500ms(好像是),所以,对于crud事物大的系统来讲肯定是要自定义超时时间咯,作为消费方,自然是优先级 ...
- 【 Ngnix 】配置路径转发至后端Apache多台虚拟主机
一.安装apache并开启端口 [root@server ~]# netstat -ntplu | grep httpd tcp /httpd tcp /httpd 二.nginx配置 locatio ...
- Selenium2+python自动化67-用例失败自动截图【转载】
前言: 装饰器其实就是一个以函数作为参数并返回一个替换函数的可执行函数 上一篇讲到用装饰器解决异常后自动截图,不过并没有与unittest结合,这篇把截图的装饰器改良了下,可以实现用例执行失败自动截图 ...
- Selenium2+python自动化35-获取元素属性【转载】
前言 通常在做断言之前,都要先获取界面上元素的属性,然后与期望结果对比.本篇介绍几种常见的获取元素属性方法. 一.获取页面title 1.有很多小伙伴都不知道title长在哪里,看下图左上角. 2.获 ...
- docker从零开始 存储(一)存储概述
管理Docker中的数据 默认情况下,在容器内创建的所有文件都存储在可写容器层中.这意味着: 当该容器不再运行时,数据不会持久存在,如果另一个进程需要,则可能很难从容器中获取数据. 容器的可写层紧密耦 ...
- python-函数(命名空间、作用域、闭包)
一.命名空间 全局命名空间 局部命名空间 内置命名空间 *内置命名空间中存放了python解释器为我们提供的名字:input,print,str,list,tuple...它们都是我们熟悉的,拿过来就 ...
- python 垃圾回收详解
原文:https://zhuanlan.zhihu.com/p/31150408 总纲 策略和垃圾回收系统工作内容 引用计数详解 标记-清除+分代收集 循环引用 编程应用-常见方法 ex 过程详解 使 ...
- 云平台服务运行情况检测脚本V0.1
1.准备Python3环境 yum groupinstall "Development tools" -y yum install zlib-devel bzip2-devel o ...
- 最适合2018年自学的web前端零基础系统学习视频+资料
这份资料整理花了近7天,如果感觉有用,可以分享给更有需要的人. 在看接下的介绍前,我先说一下整理这份资料的初衷: 我的初衷是想帮助在这个行业发展的朋友和童鞋们,在论坛博客等地方少花些时间找资料,把有限 ...