BZOJ 4174 tty的求助 莫比乌斯反演
题目大意:求∑Nn=1∑Mm=1∑m−1k=0⌊nk+xm⌋ mod 998244353
如果n和m都已经确定了。如今要求这坨玩应:
∑m−1k=0⌊nk+xm⌋
=∑m−1k=0(⌊nk%m+xm⌋+nk−nk%mm)
=∑m−1k=0(⌊nk%m+xm⌋+nkm−nk%mm)
我们一项一项考虑
令d=gcd(n,m),那么有
∑m−1k=0⌊nk%m+xm⌋
=d∗∑md−1k=0⌊kd+xm⌋
=d∗(md∗x−x%mm+∑md−1k=0⌊kd+x%mm⌋)
=d∗(md∗x−x%mm+∑md−1k=0[kd+x%m≥m])
=d∗(x−x%md+⌊x%md⌋)
=d∗⌊xd⌋
∑m−1k=0nkm=nm∗m∗(m−1)2=n∗m−n2
∑m−1k=0nk%mm=d∗∑md−1k=0kdm=d2m∗(md−1)∗md2=m−d2
故答案为
∑Nn=1∑Mm=1(d∗⌊xd⌋+n∗m−n2−m−d2)
=12∗∑Nn=1∑Mm=1(2∗d∗⌊xd⌋+d+n∗m−n−m)
=12∗(S(N)∗S(M)−S(N)∗m−S(M)∗n+∑min(N,M)d=1(d+2∗d∗⌊xd⌋)∑min(⌊Nd⌋,⌊Md⌋)k=1μ(k)∗⌊Nd∗k⌋∗⌊Md∗k⌋)
当中S(n)=n∗(n+1)2
然后O(nlogn)枚举d和k就可以
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 500500
#define MOD 998244353
using namespace std;
int n,m,x;
long long ans;
int mu[M];
int prime[M],tot;
bool not_prime[M];
void Linear_Shaker()
{
int i,j;
mu[1]=1;
for(i=2;i<=500000;i++)
{
if(!not_prime[i])
{
prime[++tot]=i;
mu[i]=MOD-1;
}
for(j=1;prime[j]*i<=500000;j++)
{
not_prime[prime[j]*i]=true;
if(i%prime[j]==0)
{
mu[prime[j]*i]=0;
break;
}
mu[prime[j]*i]=(MOD-mu[i])%MOD;
}
}
}
long long Sum(long long n)
{
return (n*(n+1)>>1)%MOD;
}
int main()
{
int i,j;
cin>>n>>m>>x;
Linear_Shaker();
ans=((Sum(n)*Sum(m)-Sum(n)*m-Sum(m)*n)%MOD+MOD)%MOD;
if(n>m) swap(n,m);
for(i=1;i<=n;i++)
{
long long temp=i+x/i*i*2;
for(j=1;j*i<=n;j++)
(ans+=temp*mu[j]%MOD*(n/i/j)%MOD*(m/i/j)%MOD)%=MOD;
}
cout<<(ans*(MOD+1>>1)%MOD)<<endl;
return 0;
}
BZOJ 4174 tty的求助 莫比乌斯反演的更多相关文章
- 【bzoj4174】tty的求助 莫比乌斯反演
Description Input 输入仅有一行. 第一行仅有两个正整数N,M 和一个实数 x. Output 输出共1行,由亍结果过大,所以请输出上式对998244353 取模的结果. Sampl ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 1114 Number theory(莫比乌斯反演+预处理)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演
分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...
随机推荐
- Basic-Paxos协议日志同步应用
使用Basic-Paxos协议的日志同步与恢复 传统数据库保持服务持续可用通常采用1主N备, 既采取两种日志同步模式: Maximum Availability和Maximum Protection. ...
- python数据类型-----字符串
今天来总结下python3.4版本字符串的一些操作方法,对这些方法先作一个简单的分类,按照分类来进行总结. Sequence Typessequence类型有六种:strings, byte sequ ...
- python变现实现新浪微博登陆
新浪微博的登陆现在是越来越那个了,以前的模拟浏览器登陆新浪微博貌似也越来不管用了 登陆信息由以前的form变成了现在javascript,javascript的加载居然用了一个javascript的函 ...
- Tornado 模块概述
Tornado模块分类 1. Core web framework tornado.web — 包含web框架的大部分主要功能,包含RequestHandler和Application两个重要的类 t ...
- [BZOJ1491][NOI2007]社交网络 floyd
1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2196 Solved: 1170[Submit][Status ...
- AC日记——逆序对 洛谷 P1908
逆序对 思路: 线段树水过: 代码: #include <cstdio> #include <cstring> #include <iostream> #inclu ...
- 前端读者 | 分分钟让你理解HTTPS
本文来自@Keely袁庆玲:来源:https://juejin.im/post/5ad6ad575188255c272273c4 目前来看大多数网站都从HTTP转向HTTPS,不在支持HTTP,所以了 ...
- thinkphp函数学习(1)——header, get_magic_quotes_gpc, array_map, stripslashes, stripslashes_deep
1. header 相关语句 header('Content-type: text/html; charset=utf-8'); // 因为这是在TP的入口文件中,所以每个页面返回的http head ...
- UVA 10382.Watering Grass-贪心
10382 - Watering Grass Time limit: 3.000 seconds n sprinklers are installed in a horizontal strip of ...
- CF 999B. Reversing Encryption【模拟/string reverse】
[链接]:CF [代码]: #include<bits/stdc++.h> #define PI acos(-1.0) #define pb push_back #define F fir ...