LeetCode 733: 图像渲染 flood-fill
题目:
有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间。
An image
is represented by a 2-D array of integers, each integer representing the pixel value of the image (from 0 to 65535).
给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 newColor,让你重新上色这幅图像。
Given a coordinate (sr, sc)
representing the starting pixel (row and column) of the flood fill, and a pixel value newColor
, "flood fill" the image.
为了完成上色工作,从初始坐标开始,记录初始坐标的上下左右四个方向上像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应四个方向上像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为新的颜色值。
To perform a "flood fill", consider the starting pixel, plus any pixels connected 4-directionally to the starting pixel of the same color as the starting pixel, plus any pixels connected 4-directionally to those pixels (also with the same color as the starting pixel), and so on. Replace the color of all of the aforementioned pixels with the newColor.
最后返回经过上色渲染后的图像。
At the end, return the modified image.
示例 1:
输入:
image = [[1,1,1],[1,1,0],[1,0,1]]
sr = 1, sc = 1, newColor = 2
输出: [[2,2,2],[2,2,0],[2,0,1]]
解析:
在图像的正中间,(坐标(sr,sc)=(1,1)),
在路径上所有符合条件的像素点的颜色都被更改成2。
注意,右下角的像素没有更改为2,
因为它不是在上下左右四个方向上与初始点相连的像素点。
注意:
image
和image[0]
的长度在范围[1, 50]
内。- 给出的初始点将满足
0 <= sr < image.length
和0 <= sc < image[0].length
。 image[i][j]
和newColor
表示的颜色值在范围[0, 65535]
内。
Note:
The length of image
and image[0]
will be in the range [1, 50]
.
The given starting pixel will satisfy 0 <= sr < image.length
and 0 <= sc < image[0].length
.
The value of each color in image[i][j]
and newColor
will be an integer in [0, 65535]
.
解题思路:
与01矩阵类似,在图的数据结构内找到所有旧的像素点改成新的新素值。无非是图的遍历,BFS和DFS。
就这道题而言,不涉及路径长度,明显DFS深度优先遍历更适合。因为BFS广度优先遍历需要记录每个相邻符合要求的位置,并且不能添加重复的点。 DFS可以用栈或递归实现,如果用栈来解虽然比递归更好理解一些,但是每次依然要存储每个点的索引位置,并且出入栈也会消耗时间。所以这道题的最优解应该是用递归实现的深度优先遍历解题。
代码:
DFS(Java):
class Solution {
private boolean withinBounds(int[][] img, int i, int j) {//判断指针是否溢出
return (i < img.length && i >= 0) && (j < img[0].length && j >= 0);
}
private void floodFillProcess(int[][] img, int sr, int sc, int oc, int nc) {
if (withinBounds(img, sr, sc) && img[sr][sc] == oc) {//指针不溢出且像素值为旧值时
img[sr][sc] = nc;//改为新值
floodFillProcess(img, sr - 1, sc, oc, nc);//递归上下左右四个点
floodFillProcess(img, sr + 1, sc, oc, nc);
floodFillProcess(img, sr, sc - 1, oc, nc);
floodFillProcess(img, sr, sc + 1, oc, nc);
}
}
public int[][] floodFill(int[][] image, int sr, int sc, int newColor) {
int oc = image[sr][sc];
if (newColor == oc) return image;
floodFillProcess(image, sr, sc, oc, newColor);
return image;
}
}
DFS(Python):
class Solution:
def floodFill(self, image: List[List[int]], sr: int, sc: int, newColor: int) -> List[List[int]]:
oldColor = image[sr][sc]
if oldColor == newColor:
return image
self.dfs(image, sr, sc, oldColor, newColor)
return image
def dfs(self, image: List[List[int]], sr: int, sc: int, oldColor: int, newColor: int):
if image[sr][sc] == oldColor:
image[sr][sc] = newColor
if sr-1 >= 0:#先判断是否溢出再决定是否递归
self.dfs(image, sr-1, sc, oldColor, newColor)
if sr+1 < len(image):
self.dfs(image, sr+1, sc, oldColor, newColor)
if sc-1 >= 0:
self.dfs(image, sr, sc-1, oldColor, newColor)
if sc+1 < len(image[0]):
self.dfs(image, sr, sc+1, oldColor, newColor)
附:
BFS深度优先遍历(Java):
class Solution {
public int[][] floodFill(int[][] image, int sr, int sc, int newColor) {
int oldColor = image[sr][sc];
if (oldColor == newColor) return image;//旧像素值与新像素值相等时,无需修改
int rows = image.length;
int columns = image[0].length;
bfs(image, sr * columns + sc, rows, columns, newColor, oldColor);//进入BFS辅助函数
return image;
}
private void bfs(int[][] img, int loc, int row, int column, int nc, int oc) {
Set<Integer> set = new LinkedHashSet<>(); //set(),避免添加重复点
Queue<Integer> queue = new LinkedList<>();
queue.add(loc);//队列加入第一个初始点,记录点索引的方式是x*column+y,
while (!queue.isEmpty()) {
int tmp = queue.poll();
int r = tmp / column, c = tmp % column;//拆解位置
if (img[r][c] == oc && !set.contains(tmp)) {//像素值为旧值,并且该点未被计算过
img[r][c] = nc;//改为新值
set.add(tmp);
if (r + 1 < row) if (img[r + 1][c] == oc) queue.add((r + 1) * column + c);
if (r - 1 >= 0) if (img[r - 1][c] == oc) queue.add((r - 1) * column + c);
if (c + 1 < column) if (img[r][c + 1] == oc) queue.add(r * column + c + 1);
if (c - 1 >= 0) if (img[r][c - 1] == oc) queue.add(r * column + c - 1);
}
}
}
}
LeetCode 733: 图像渲染 flood-fill的更多相关文章
- Java实现 LeetCode 733 图像渲染(DFS)
733. 图像渲染 有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间. 给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的 ...
- [Swift]LeetCode733. 图像渲染 | Flood Fill
An image is represented by a 2-D array of integers, each integer representing the pixel value of the ...
- Leetcode之深度优先搜索(DFS)专题-733. 图像渲染(Flood Fill)
Leetcode之深度优先搜索(DFS)专题-733. 图像渲染(Flood Fill) 深度优先搜索的解题详细介绍,点击 有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 ...
- 【LeetCode】733. Flood Fill 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:DFS 方法二:BFS 日期 题目地址:ht ...
- LN : leetcode 733 Flood Fill
lc 733 Flood Fill 733 Flood Fill An image is represented by a 2-D array of integers, each integer re ...
- [LeetCode&Python] Problem 733. Flood Fill
An image is represented by a 2-D array of integers, each integer representing the pixel value of the ...
- Leetcode733.Flood Fill图像渲染
有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间. 给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 newCol ...
- [LeetCode] Flood Fill 洪水填充
An image is represented by a 2-D array of integers, each integer representing the pixel value of the ...
- 【Leetcode_easy】733. Flood Fill
problem 733. Flood Fill 题意:图像处理中的泛洪填充算法,常见的有四邻域像素填充法.八邻域像素填充法.基于扫描线的像素填充法,实现方法分为递归与非递归(基于栈). 泛洪填充算法原 ...
随机推荐
- WEB引入Google思源黑体
通过Link标签在网页头部引用Google Web Font: 1 <link rel="stylesheet" href="https://fonts.googl ...
- C++ day01-C++的函数和对象
C++的函数和对象 1.1 1 混合型语言 c++以.cpp为文件扩展名,有且只有一个名为main的主函数,因保留了这个面向过程的主函数,所以被称为混合语言 2 注释方式 . C++的注释方式有两种, ...
- 黄聪:wordpress登录后台后load-scripts.php载入缓慢
今天一个微信群里一个好友问大鸟,他的wordpess后台载入非常缓慢,缓慢到什么程度,我们看图: 这个真的是超级慢了,这类问题怎么解决呢,我们登录后台后,按下F12打开控制台,接着点击network, ...
- C# 获取系统硬件可用信息
如何获取系统可用磁盘和可用内存? 1 获取磁盘信息 这个有自带的 DriveInfo 可以用. DriveInfo 类 (System.IO) | Microsoft Docs 2 获取内存信息 参考 ...
- Java内功心法,Set集合的详解
本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...
- Python中使用requests和parsel爬取喜马拉雅电台音频
场景 喜马拉雅电台: https://www.ximalaya.com/ 找到一步小说音频,这里以下面为例 https://www.ximalaya.com/youshengshu/16411402/ ...
- jsp表单更新数据库
和插入语句相似,表单传值,在另一个页面接收数据并连接数据库进行更新: 语句如下: <% request.setCharacterEncoding("UTF-8"); Stri ...
- 【微信小程序】template模板使用详解
WXML提供模板(template),可以在模板中定义代码片段,然后在不同的地方调用. 模板的作用域: 模板拥有自己的作用域,只能使用 data 传入的数据以及模板定义文件中定义的 <wxs / ...
- 【亲测有效】Ubuntu18.04 sudo apt update无法解析域名的解决方案
问题描述如下: 拿起了封尘已久的ThinkPad,输入 sudo apt update 的时候,发现这个命令变得不好使了,具体出现的问题如下图所示: #( 09/08/19@ 2:44下午 )( py ...
- Firebase-config 在android中的使用
说明 firebase-config提供远程配置方案,可以通过远程控制app的基本配置方案更换工作.如在特定时间更换不同的App基础配色反感,更换基础显示图标等. firebase-config fi ...