一、消息队列概述

消息队列中间件是分布式系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构。目前使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ

二、消息队列应用场景

以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。

2.1异步处理

场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种 1.串行的方式;2.并行方式

a、串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。

b、并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间

假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。
因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)
小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:

按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20
QPS。比串行提高了3倍,比并行提高了两倍。

2.2应用解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:

传统模式的缺点:假如库存系统无法访问,则订单减库存将失败,从而导致订单失败,订单系统与库存系统耦合

如何解决以上问题呢?引入应用消息队列后的方案,如下图:

订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功
库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作
假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦

2.3流量削锋

流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。
应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。

a、可以控制活动的人数
      b、可以缓解短时间内高流量压垮应用

用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面。
秒杀业务根据消息队列中的请求信息,再做后续处理

2.4日志处理

日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下

日志采集客户端,负责日志数据采集,定时写受写入Kafka队列
Kafka消息队列,负责日志数据的接收,存储和转发
日志处理应用:订阅并消费kafka队列中的日志数据

2.5消息通讯

消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等
           点对点通讯:

客户端A和客户端B使用同一队列,进行消息通讯。

聊天室通讯:

客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。

三、消息中间件示例

3.1电商系统


消息队列采用高可用,可持久化的消息中间件。比如Active MQ,Rabbit MQ,Rocket Mq。
(1)应用将主干逻辑处理完成后,写入消息队列。消息发送是否成功可以开启消息的确认模式。(消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性)
(2)扩展流程(发短信,配送处理)订阅队列消息。采用推或拉的方式获取消息并处理。
(3)消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理。

3.2日志收集系统

分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。
Zookeeper注册中心,提出负载均衡和地址查找服务
日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列
Kafka集群:接收,路由,存储,转发等消息处理
Storm集群:与OtherApp处于同一级别,采用拉的方式消费队列中的数据

消息中间件(二)MQ使用场景的更多相关文章

  1. mq使用场景、不丢不重、时序性

    mq使用场景.不丢不重.时序性.削峰 参考: http://zhuanlan.51cto.com/art/201704/536407.htm http://zhuanlan.51cto.com/art ...

  2. Disruptor 系列(二)使用场景

    Disruptor 系列(二)使用场景 今天用一个订单问题来加深对 Disruptor 的理解.当系统中有订单产生时,系统首先会记录订单信息.同时也会发送消息到其他系统处理相关业务,最后才是订单的处理 ...

  3. 消息中间件之MQ详解及四大MQ比较

    一.消息中间件相关知识 1.概述 消息队列已经逐渐成为企业IT系统内部通信的核心手段.它具有低耦合.可靠投递.广播.流量控制.最终一致性等一系列功能,成为异步RPC的主要手段之一.当今市面上有很多主流 ...

  4. 分布式消息中间件(二)ActiveMQ

    一.概述 Apache出品,最流行的,能力强劲的开源消息总线. 1.JMS规范 Java消息服务(Java Message Service,即JMS)应用程序接口是一个Java平台中关于面向消息中间件 ...

  5. 消息中间件activemq的使用场景介绍(结合springboot的示例)

    一.消息队列概述 消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题.实现高性能,高可用,可伸缩和最终一致性架构.是大型分布式系统不可缺少的中间件. 目前在生产环境,使 ...

  6. 全文搜索引擎 Elasticsearch (二) 使用场景

    1.场景—:使用Elasticsearch作为主要的后端 传统项目中,搜索引擎是部署在成熟的数据存储的顶部,以提供快速且相关的搜索能力.这是因为早期的搜索引擎不能提供耐用的​​存储或其他经常需要的功能 ...

  7. 基于redis的分布式锁二种应用场景

    “分布式锁”是用来解决分布式应用中“并发冲突”的一种常用手段,实现方式一般有基于zookeeper及基于redis二种.具体到业务场景中,我们要考虑二种情况: 一.抢不到锁的请求,允许丢弃(即:忽略) ...

  8. 分布式消息中间件Rabbit Mq的了解与使用

    MQ(消息队列)作为现代比较流行的技术,在互联网应用平台中作为中间件,主要解决了应用解耦.异步通信.流量削锋.服务总线等问题,为实现高并发.高可用.高伸缩的企业应用提供了条件. 目前市面比较流行的消息 ...

  9. 2020-05-25:MQ应用场景、Kafka和rabbit区别?kafka为什么支撑高并发? 来自

    福哥答案2020-05-25: 应用场景:解耦.异步.削峰.区别如下:特性 ActiveMQ RabbitMQ RocketMQ Kafka单机吞吐量 万级,比 RocketMQ.Kafka 低一个数 ...

随机推荐

  1. java 反编译工具 jd-gui

    下载地址    http://java-decompiler.github.io/         一般使用windows 版本  看你使用的操作系统了 解压  点击exe 进入 选择你编译后的cla ...

  2. Cisco pppoe上网设置

    1.配置虚拟端口: interface Dialer1 ip address negotiated ip nat outside ip virtual-reassembly in encapsulat ...

  3. Day5- Python基础5 模块导入、time、datetime、random、os、sys、hashlib、json&pickle

    本节目录: 1.模块的分类 2.模块的导入 3.time模块 4.datetime模块 5.random 6.os模块 7.sys模块 8.hashlib 9.json&pickle 一.模块 ...

  4. LeetCode 5129. 下降路径最小和 II Minimum Falling Path Sum II

    地址 https://leetcode-cn.com/contest/biweekly-contest-15/problems/minimum-falling-path-sum-ii/ 题目描述给你一 ...

  5. 浅谈vue中的计算属性和侦听属性

    计算属性 计算属性用于处理复杂的业务逻辑 计算属性具有依赖性,计算属性依赖 data中的初始值,只有当初始值改变的时候,计算属性才会再次计算 计算属性一般书写为一个函数,返回了一个值,这个值具有依赖性 ...

  6. JPA的一些问题

    Error creating bean with name 'mainController': Unsatisfied dependency expressed through field 'test ...

  7. os 和 sys 的模块使用方法和模块

    os  的模块  方法 os.remove()删除文件 os.rename()重命名文件 os.walk()生成目录树下的所有文件名 os.chdir()改变目录 os.mkdir/maked ...

  8. SVO稀疏图像对齐代码分析

    SVO使用稀疏直接法计算两帧之间的初始相机位姿,即使用两帧之间稀疏的4*4 patch的光度误差为损失函数,使用G-N优化算法获得两帧之间的位姿变换,由于没有特征匹配过程效率较高.相比自己实现的稀疏直 ...

  9. Codeforces Round #599 (Div. 1) A. Tile Painting 数论

    C. Tile Painting Ujan has been lazy lately, but now has decided to bring his yard to good shape. Fir ...

  10. 函数基础实战之ATM和购物车系统

    username_list = [] prize_dict = { '0': "芭比娃娃", '1': "变形金刚", '2': "psp游戏机&qu ...