最近常听同事提及相关性分析,正巧看到这个google的开源库,并把相关操作与调试结果记录下来。
输出结果: 比较有意思的巧合是黄蓉使出打狗棒,郭靖就用了降龙十八掌,再后测试了名词的解析。
小说集可以百度《金庸小说全集 14部》全(TXT)作者:金庸 下载下来。
需要整理好格式,门派和武功名称之间需要有换行符,留意删除掉最后一行的空白区域。
下载完成后可以用自己习惯的工具或程序做相应调整,因语料内容太长,博客里面不允许"堆砌",所以没复制上来,有需要的可以再联系。
with open('names.txt') as f:
data = [line.strip() for line in f.readlines()]
novels = data[::2]
names = data[1::2] novel_names = {k: v.split() for k, v in zip(novels, names)}
//可以在这里打印下看是不是都读取过 //开始分词并加载
for _, names in novel_names.items():#.iteritems():(Python2的旧写法)
for name in names:
jieba.add_word(name)
with open("kongfu.txt",encoding='UTF-8') as f:
kungfu_names = [line.strip()
for line in f.readlines()]
with open("bangs.txt") as f:
bang_names = [line.strip()
for line in f.readlines()] for name in kungfu_names:
jieba.add_word(name) for name in bang_names:
jieba.add_word(name) novels = ["书剑恩仇录", "天龙八部","碧血剑","越女剑","飞狐外传","侠客行","射雕英雄传","神雕侠侣","连城诀","鸳鸯刀","倚天屠龙记","白马啸西风","笑傲江湖","雪山飞狐","鹿鼎记"]
//你知道的:飞雪连天射白鹿,笑书神侠倚碧鸳
sentences = [] for novel in novels:
with open('{}.txt'.format(novel),encoding='UTF-8') as f:
data = [line.strip()
for line in f.readlines()
if line.strip()]
for line in data:
words = list(jieba.cut(line))
sentences.append(words) model = gensim.models.Word2Vec(sentences,
size=200, #
window=5,
min_count=5,
workers=4)
//便于使用的方法
def get_gongfu(a, b, c):
d, _ = model1.most_similar(positive=[c, b], negative=[a])[0]
print (c,d)
//使用举例一
print ('-------------若黄蓉使出打狗棒法,郭靖会怎样?-------------------------')
get_gongfu("黄蓉","打狗棒法","郭靖")
print ('-------------若黄蓉拿着打狗棒,郭靖又会拿啥?-------------------------')
get_gongfu("黄蓉","打狗棒","郭靖")
输出结果:
-------------相关性:乔峰-------------------------
%% 虚竹 0.8226621747016907
%% 慕容复 0.809000551700592
%% 段正淳 0.808856725692749
%% 木婉清 0.7898266315460205
%% 童姥 0.7881260514259338
%% 袁承志 0.7863771915435791
%% 全冠清 0.7761101722717285
%% 谢烟客 0.7738543748855591
%% 俞莲舟 0.7663788199424744
%% 陆菲青 0.7651679515838623
-------------相关性:阿朱-------------------------
阿紫 0.8502078056335449
王语嫣 0.8323276042938232
木婉清 0.8188427090644836
方怡 0.81195068359375
钟灵 0.8042664527893066
仪琳 0.7905520796775818
青青 0.7837553024291992
香香公主 0.7774882316589355
盈盈 0.7765697836875916
马夫人 0.7628135681152344
-------------相关性:降龙十八掌-------------------------
打狗棒法 0.9099119901657104
太极拳 0.8792168498039246
空明拳 0.8742830157279968
绝招 0.864672064781189
一阳指 0.8576483726501465
蛤蟆功 0.8443030714988708
心法 0.8419612646102905
棒法 0.840523362159729
罗汉拳 0.838168740272522
小擒拿手 0.8356980085372925
-------------若黄蓉使出打狗棒法,郭靖会怎样?-------------------------
郭靖 降龙十八掌
-------------若黄蓉拿着打狗棒,郭靖又会拿啥?-------------------------
郭靖 令旗
输出结果: 比较有意思的巧合是黄蓉使出打狗棒,郭靖就用了降龙十八掌,再后测试了名词的解析。

模型参数:
Python文章相关性分析---金庸武侠小说分析-----

sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建。
sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。
size:是指特征向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百。
window:表示当前词与预测词在一个句子中的最大距离是多少
alpha: 是学习速率
seed:用于随机数发生器。与初始化词向量有关。
min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5
max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。
sample: 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5)
workers参数控制训练的并行数。
hs: 如果为1则会采用hierarchica·softmax技巧。如果设置为0(defau·t),则negative sampling会被使用。
negative: 如果>0,则会采用negativesamp·ing,用于设置多少个noise words
cbow_mean: 如果为0,则采用上下文词向量的和,如果为1(defau·t)则采用均值。只有使用CBOW的时候才起作用。
hashfxn: hash函数来初始化权重。默认使用python的hash函数
iter: 迭代次数,默认为5
trim_rule: 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RU·E_DISCARD,uti·s.RU·E_KEEP或者uti·s.RU·E_DEFAU·T的函数。
sorted_vocab: 如果为1(defau·t),则在分配word index 的时候会先对单词基于频率降序排序。
batch_words:每一批的传递给线程的单词的数量,默认为10000
最近常听同事提及相关性分析,正巧看到这个google的开源库,并把相关操作与调试结果记录下来。
小说集可以百度《金庸小说全集 14部》全(TXT)作者:金庸 下载下来。
需要整理好格式,门派和武功名称之间需要有换行符,留意删除掉最后一行的空白区域。
下载完成后可以用自己习惯的工具或程序做相应调整,因语料内容太长,博客里面不允许"堆砌",所以没复制上来,有需要的可以再联系。 备注:首先百度到《金庸小说全集 14部》全(TXT)作者:金庸 下载下来,然后读取内容,另:以上模型每次都训练了,

Python文章相关性分析---金庸武侠小说分析-2018.1.16的更多相关文章

  1. Python文章相关性分析---金庸武侠小说分析

    百度到<金庸小说全集 14部>全(TXT)作者:金庸 下载下来,然后读取内容with open('names.txt') as f: data = [line.strip() for li ...

  2. python实现归并排序,归并排序的详细分析

    python实现归并排序,归并排序的详细分析.   学习归并排序的过程是十分痛苦的.它并不常用,看起来时间复杂度好像是几种排序中最低的,比快排的时间复杂度还要低,但是它的执行速度不是最快的.很多朋友不 ...

  3. 理解 python metaclass使用技巧与应用场景分析

    理解python metaclass使用技巧与应用场景分析       参考: decorator与metaclass:http://jfine-python-classes.readthedocs. ...

  4. python导入csv文件出现SyntaxError问题分析

    python导入csv文件出现SyntaxError问题分析 先简单描述下碰到的题目,要求是写出2个print的结果 可以看到,a指向了一个列表list对象,在Python中,这样的赋值语句,其实内部 ...

  5. Python 爬取淘宝商品数据挖掘分析实战

    Python 爬取淘宝商品数据挖掘分析实战 项目内容 本案例选择>> 商品类目:沙发: 数量:共100页  4400个商品: 筛选条件:天猫.销量从高到低.价格500元以上. 爬取淘宝商品 ...

  6. Python中的浮点数原理与运算分析

    Python中的浮点数原理与运算分析 本文实例讲述了Python中的浮点数原理与运算.分享给大家供大家参考,具体如下: 先看一个违反直觉的例子:     >>> s = 0. > ...

  7. Python爬虫实例(六)多进程下载金庸网小说

    目标任务:使用多进程下载金庸网各个版本(旧版.修订版.新修版)的小说 代码如下: # -*- coding: utf-8 -*- import requests from lxml import et ...

  8. 金庸的武侠世界和SAP的江湖

    2018年10月30日晚,成都地铁一号线,Jerry手机app上突然弹出来一条金庸去世的新闻. Jerry识字很早,小学一年级就开始蹭我父亲的<射雕英雄传>看了.小时候,我爸工作的车间里有 ...

  9. 使用scrapy爬取金庸小说目录和章节url

    刚接触使用scrapy的时候,如果一开始就想实现特别复杂的配置,显然是不太现实的,用一些小的例子可以帮助自己理解各个模块. 今天的目标:爬取http://www.luoxia.com/shendiao ...

随机推荐

  1. 如何基于k8s快速搭建TeamCity(YAML分享)

    前言 最近有朋友基于之前的博客<Docker最全教程之使用TeamCity来完成内部CI.CD流程(十七)>搭建TeamCity时出现了一些问题,由于平常比较忙,没有及时答复,非常抱歉. ...

  2. 洛谷P1426-小鱼会有危险吗

    原题链接: https://www.luogu.org/problem/P1426 题面简述: 有一次,小鱼要从A处沿直线往右边游,小鱼第一秒可以游7米,从第二秒开始每秒游的距离只有前一秒的98%98 ...

  3. Theano at a Glance

    Theano一览 Theano是一个Python库,它允许你定义.优化和求值数学表达式,特别是具有多维数组(numpy.ndarray)的数学表达式.对于涉及大量数据的问题,使用Theano可以获得与 ...

  4. Flink中的CEP复杂事件处理 (源码分析)

    其实CEP复杂事件处理,简单来说你可以用通过类似正则表达式的方式去表示你的逻辑,表现能力非常的强,用过的人都知道 开篇先偷一张图,整体了解Flink中的CEP中的  一种重要的图  NFA非确定有限状 ...

  5. 【RN - 基础】之Windows下搭建React Native开发环境

    前言 React Native由Facebook公司于2015年F8大会上开源,其主张“Learn once, write everywhere”.React Native的核心设计理念是:既拥有Na ...

  6. Xtrabackup 全备和还原以及增量备份和还原

    目录 MySQL环境介绍 全备和还原 准备备份目录 创建测试数据 全量备份 模拟删除数据 还原数据操作 第一步 备份备份文件 第二步 关闭数据库 第三步 移除数据库的data目录 第四步 恢复前准备 ...

  7. java关键字 保留字

    Java 关键字和保留字 Java 关键字列表 (依字母排序 共51组): abstract, assert,boolean, break, byte, case, catch, char, clas ...

  8. HTML表格中各元素之间属性之间的相互影响

    开发了一个动态表格制作程序,用的是谷歌浏览器.发现几个现象,记录如下: 1.按照技术文档的说法,正规的表格样式如下: <table> <caption>标题</capti ...

  9. PAT(甲级)2017年秋季考试

    PAT(甲级)2017年秋季考试 D题红黑树待补21/30 大佬的代码,看着想哭,这才是艺术啊 A Cut Integer 模拟题 #include<bits/stdc++.h> usin ...

  10. MongoDB 谨防索引seek的效率问题【华为云技术分享】

    目录 背景 初步分析 索引seeks的原因 优化思路 小结 声明:本文同步发表于 MongoDB 中文社区,传送门:http://www.mongoing.com/archives/27310 背景 ...