写在前面:

上周微调一个文本检测模型seglink,将特征提取层进行冻结,只训练分类回归层,然而查看tensorboard发现里面有histogram显示模型各个参数分布,看了目前这个训练模型参数分布压根就看不懂,很想知道我的预训练模型的参数分布是怎么个情况,训练了一天了,模型的参数分布较预训练的模型参数有啥变化没有,怎么办呢?

利用tf.summary将模型参数分布在tensorboard可视化:

导入需要的库  设置模型文件夹路径

 import TensorFlow as tf
from tensorflow.python import pywrap_tensorflow
model_dir="___"

定义可视化方法

1、获取ckpt路径,这里的路径是checkpoint文件中的路径(ckpt文件夹中包括:checkpoint文件,index,meta,data四个文件)

code:

ckpt=tf.train.get_checkpoint_state(model_dir)
ckpt_path=ckpt.model_checkpoint_path

2、读取checkpoint 文件中模型的变量名和变量值

这里是使用get_variable_to_shape_map()获取了一个[key:name of variable      value:the shape of variable]的list

code:

reader=pywrap_tensorflow.NewCheckpointReader(ckpt_path)
param_dict=reader.get_variable_to_shape_map()

3、开一个session,

code:

with tf.Session() as sess:
validate_writer=tf.summary.FileWriter('./run')
for key in param_dict:
if(key.startwith('vgg')):
vgg_summary=tf.summary.histogram(key,reader.get_tensor(key))
merge_summary=tf.summary.merge([vgg_summary])#这里可以添加其他需要merge的summary项,如果只有一个summary也可以不用merge,
test_summary=sess.run(merge_summary)
validate_writer.add_summary(test_summary)

tf.summary.FileWriter(event_dir_path)#event_dir_path为事件日志文件夹,运行程序之后会在该指定的文件夹中生产events文件。运行TensorFlow计算后,会将各类数据汇总记录进该日志文件,tensorboard会读取这些数据进行解析并生成数据可视化的web页面。

key.startwith('vgg')在param_dict字典中提取以vgg开头的key,并获取相关tensor以histogram的形式汇总

merge_summary=tf.summary.merge([.....])合并指定数据汇总

test_summary=sess.run(merge_summary)执行一步run,得到merge_summary,并将该summary

validate_writer.add_summary(test_summary)#将当前一步run得到的summary加入之前设置的validate_writer

附上summary示意图帮助理解,图片引用自CSDN网址:https://blog.csdn.net/hongxue8888/article/details/78610305

最后还要关闭writer

validate_writer.close()

运行代码之后,执行如下指令:

tensorboard --logdir="./run"#就是之前设置的events日志文件夹的路径

然后根据执行结果上的网址,打开浏览器即可观察模型参数分部情况:

附一张参数分布图,具体怎么研究比较这个直方图,接下去再研究吧~

小白一枚,进步很慢,希望各路大神道友指教和批评~~~~

利用tensorboard可视化checkpoint模型文件参数分布的更多相关文章

  1. 【猫狗数据集】利用tensorboard可视化训练和测试过程

    数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xi ...

  2. 利用Tensorboard可视化模型、数据和训练过程

    在60分钟闪电战中,我们像你展示了如何加载数据,通过为我们定义的nn.Module的子类的model提供数据,在训练集上训练模型,在测试集上测试模型.为了了解发生了什么,我们在模型训练时打印了一些统计 ...

  3. 利用libsvm-mat建立分类模型model参数解密[zz from faruto]

    本帖子主要就是讲解利用libsvm-mat工具箱建立分类(回归模型)后,得到的模型model里面参数的意义都是神马?以及如果通过model得到相应模型的表达式,这里主要以分类问题为例子. 测试数据使用 ...

  4. 模型文件(checkpoint)对模型参数的储存与恢复

    1.  模型参数的保存: import tensorflow as tfw=tf.Variable(0.0,name='graph_w')ww=tf.Variable(tf.random_normal ...

  5. 学习TensorFlow,TensorBoard可视化网络结构和参数

    在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...

  6. tensorflow打印pb、ckpt模型的参数以及在tensorboard里显示图结构

    打印pb模型参数及可视化结构import tensorflow as tf from tensorflow.python.framework import graph_util tf.reset_de ...

  7. 使用 TensorBoard 可视化模型、数据和训练

    使用 TensorBoard 可视化模型.数据和训练 在 60 Minutes Blitz 中,我们展示了如何加载数据,并把数据送到我们继承 nn.Module 类的模型,在训练数据上训练模型,并在测 ...

  8. TensorFlow2.0(9):TensorBoard可视化

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  9. Tensorflow学习笔记3:TensorBoard可视化学习

    TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...

随机推荐

  1. Shell文件

    #!/bin/bashecho "======================欢迎来到进爷故事会======================="echo "******* ...

  2. [Asp.net] C# 操作Excel的几种方式 优缺点比较

    在项目中我们常常需要将数据库中的数据导出成Excel文件 有一次工作中我的目的就是读取Excel到内存中,整理成指定格式 整理后再导出到Excel. 因为我要处理的每个Excel表格文件很大.一个表格 ...

  3. 网络编程模型及TCP、UDP编程设计

    1.Linux网络模型 Linux网络编程--->>>socket套接字的编程 2.TCP网络模型                                          ...

  4. Excel催化剂开源第4波-ClickOnce部署要点之导入数字证书及创建EXCEL信任文件夹

    Excel催化刘插件使用Clickonce的部署方式发布插件,以满足用户使用插件过程中,需要对插件进行功能升级时,可以无痛地自动更新推送新版本.但Clickonce部署,对用户环境有较大的要求,前期首 ...

  5. Scala数据结构

    Scala数据结构 主要的集合特质 Scala同时支持可变集合和不可变集合,优先采用不可变集合.集合主要分为三大类:序列(List),集(set),映射(map).所有的集合都扩展自Iterable特 ...

  6. Spring 自动生成getter和setter方法 tostring方法

    添加maven依赖 <!-- https://mvnrepository.com/artifact/org.projectlombok/lombok --> <dependency& ...

  7. [leetcode] 406. Queue Reconstruction by Height (medium)

    原题 思路: 一开始完全没有思路..看了别人的思路才解出来. 先按照他们的高度从高到低(因为我后面用的从前往后遍历插入,当然也可以从低到高)排序,如果高度一样,那么按照k值从小到大排序. 排完序后我们 ...

  8. oracle分隔字符串列转行

    1. DEMO: SELECT REGEXP_SUBSTR('1,2', '[^,]+', 1, LEVEL)          FROM DUAL        CONNECT BY REGEXP_ ...

  9. 打包名命令:tar

    将多个文件或目录包成一个大文件的命令功能,我们称它是一种"打包命令". tar的参数非常多,这里只列出几个常用的参数,更多的参数你可以自行man tar查询. [root@www ...

  10. Android入门简介

    GeoQuiz应用是由一个activity和一个布局(layout)组成. activity是Android SDK中Activity类的一个具体实例,负责管理用户与信息屏的交互. 布局定义了一系列用 ...