基于API和SQL的基本操作【DataFrame】
写在前面:
当得到一个DataFrame对象之后,可以使用对象提供的各种API方法进行直接调用,进行数据的处理。
// =====基于dataframe的API=======之后的就都是DataFrame 的操作了==============
infoDF.show()
infoDF.filter(infoDF.col("age") > 30).show()
另,也可以将DataFrame对象通过createOrReplaceTempView()方法,将其转为一张表,从而使用SQL来进行数据处理。
// ======基于SQL的API===========DataFrame 创建为一张表================
infoDF.createOrReplaceTempView("infos")
spark.sql("select * from infos where age > 30").show()
主要介绍一下API的基本操作,因为SQL的话,写法和传统的基本没差。
DEMO1
package february.sql
import org.apache.spark.sql.SparkSession
/**
* Description: DataFrame API基本操作 直接读取Json文件为DataFrame对象
*
* @Author: 留歌36
* @Date: 2019/2/24 17:54
*/
object DataFrameApp {
def main(args: Array[String]): Unit = {
// Spark SQL的入口点是:SparkSession
val spark = SparkSession.builder()
.appName(this.getClass.getSimpleName)
.master("local[2]")
.getOrCreate()
// 将json文件加载成一个DataFrame
val DF = spark.read.format("json").load("f:\\user.json")
// 输出dataframe对应的schema的信息
DF.printSchema()
// 输出数据集的前20条数据
DF.show()
// 查询某几列所有的数据:select name from table
DF.select("name").show()
// 查询某几列的所有数据,并对列进行计算:select name, age+10 from table;
DF.select(DF.col("name"), (DF.col("age")+10).as("age2")).show()
// 根据某一列的值,进行过滤。select * from table where age > 21
DF.filter(DF.col("age") > 21).show()
// 根据某一列进行分组,然后再进行聚合 select age,count(1) from table group by age
DF.groupBy("age").count().show()
spark.stop()
}
}
DEMO2
package february.sql
import february.sql.DataFrameRDDApp.Info
import org.apache.spark.sql.SparkSession
/**
* Description: DataFrame中的其他操作 读取TXT文件为RDD,再反射隐式转换为DataFrame对象
*
* @Author: 留歌36
* @Date: 2019/2/25 19:31
*/
object DataFrameCase {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName(this.getClass.getSimpleName).master("local[2]").getOrCreate()
// RDD => DataFrame
val textFile = spark.sparkContext.textFile("f:\\users.txt")
textFile.foreach(println)
// 注意这里的隐私转换,split("\\|") 竖线需要转义
import spark.implicits._
val DF = textFile.map(_.split("\\|")).map(line => Student(line(0).toInt, line(1), line(2), line(3))).toDF()
DF.show()
// show 方法默认只显示前20条记录,show()在这里被重载了很多次
DF.show(30)
DF.show(30,false) //不隐藏其余的
// 返回前10条记录
DF.take(10).foreach(println)
DF.first()
DF.head(5)
DF.select("name","phone").show(30,false)
//name字段为空或NULL的过滤出来
DF.filter("name='' OR name='NULL'").show()
// name 以M开头的
DF.filter("SUBSTR(name,0,1)='留'").show()
// 排序的使用,几种传递参数的方式
DF.sort(DF.col("name").desc).show() //降序
DF.sort(DF("name")).show()
DF.sort("name").show()
// 排序升级操作
DF.sort("name", "id").show()
DF.sort(DF("name").asc, DF("id").desc).show() //name的升序,id的降序
// 修改查询的列名(别名的使用)
DF.select(DF("name").as("stuent_name")).show()
// join 操作
val DF2 = textFile.map(_.split("\\|")).map(line => Student(line(0).toInt, line(1), line(2), line(3))).toDF()
// 默认内连接
val joinDF = DF.join(DF2, DF("id") === DF2("id"))
joinDF.show()
//查看所有的内置函数
// spark.sql("show functions").show(1000)
spark.stop()
}
case class Student(id: Int, name: String, phone: String,email: String)
}
更多相关小demo:每天一个程序:https://blog.csdn.net/liuge36/column/info/34094
基于API和SQL的基本操作【DataFrame】的更多相关文章
- 且谈 Apache Spark 的 API 三剑客:RDD、DataFrame 和 Dataset
作者:Jules S. Damji 译者:足下 本文翻译自 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets ,翻译已 ...
- MySQL(一) -- MySQL学习路线、数据库的基础、关系型数据库、关键字说明、SQL、MySQL数据库、MySQL服务器对象、SQL的基本操作、库操作、表操作、数据操作、中文数据问题、 校对集问题、web乱码问题
1 MySQL学习路线 基础阶段:MySQL数据库的基本操作(增删改查),以及一些高级操作(视图.触发器.函数.存储过程等). 优化阶段:如何提高数据库的效率,如索引,分表等. 部署阶段:如何搭建真实 ...
- 基于Oracle的SQL优化(社区万众期待 数据库优化扛鼎巨著)
基于Oracle的SQL优化(社区万众期待数据库优化扛鼎巨著) 崔华 编 ISBN 978-7-121-21758-6 2014年1月出版 定价:128.00元 856页 16开 编辑推荐 本土O ...
- 基于iSCSI的SQL Server 2012群集测试(四)--模拟群集故障转移
6.模拟群集故障转移 6.1 模拟手动故障转移(1+1) 模拟手动故障转移的目的有以下几点: 测试群集是否能正常故障转移 测试修改端口是否能同步到备节点 测试禁用full-text和Browser服务 ...
- 数据库 基于索引的SQL语句优化之降龙十八掌(转)
一篇挺不错的关于SQL语句优化的文章,因不知原始出处,故未作引用说明! 1 前言 客服业务受到SQL语句的影响非常大,在规模比较大的局点,往往因为一个小的SQL语句不够优化,导致数据库性能急 ...
- 基于oracle的sql优化
[基于oracle的sql优化] 基于oracle的sql优化 [博主]高瑞林 [博客地址]http://www.cnblogs.com/grl214 一.编写初衷描述 在应有系统开发初期,由于数据库 ...
- 转://从一条巨慢SQL看基于Oracle的SQL优化
http://mp.weixin.qq.com/s/DkIPwbDKIjH2FMN13GkT4w 本次分享的内容是基于Oracle的SQL优化,以一条巨慢的SQL为例,从快速解读SQL执行计划.如何从 ...
- 2019年5月1日起安卓应用应基于API 26开发,那么API等级是啥?
2019年5月1日起安卓应用应基于API 26开发,那么API等级是啥? 转 https://www.ithome.com/html/android/372234.htm 据泰尔终端实验室公众微信 ...
- 基于时间的 SQL注入研究
SQL注入攻击是业界一种非常流行的攻击方式,是由rfp在1998年<Phrack>杂志第54期上的“NT Web Technology Vulnerabilities”文章中首次提出的.时 ...
随机推荐
- 本地项目上传到github上最直接步骤
1.首先得有一个git账号(本地安装git) 2.git上创建一个project 3.回到本地你要提交文件夹位置 4.按住shift + 鼠标右键 选择在此处打开命令窗口 5.输入命令 git in ...
- python学习——列表生成式,生成器和迭代器
列表生成式 列表生成式,是python内置的非常简单却强大的可以用来创建list的生成式.它可以极大的简化语句. """列表生成式""" # ...
- 利用window对象下内置的子对象实现网页的刷新
这里我们用到的window对象下内置的子对象有: 1.history对象:包含浏览器访问过的url.我们可以利用它的history.go(num);属性实现页面的刷新: h ...
- ES5新增数组方法测试和字符串常见API测试
首先是ES5新增数组方法测试: <!DOCTYPE html><html lang="en"><head> <meta charset=& ...
- 前端测试工具之 postman
1.不论你是一个前端工程师还是一个后端工程师相信这款工具都会使你的开发更加简便. 2.在此我推荐的一款软件工具是 postman . 在这里我对 postman 做一个简单的介绍: ①它能够模拟表单发 ...
- JVM中class文件探索与解析
一直想成为一名优秀的架构师的我,转眼已经工作快两年了,对于java内核了解甚少,闲来时间,看看JVM,吧自己的一些研究写下来供大家参考,有不对的地方请指正. 废话不多说,一起来看看JVM中类文件是如何 ...
- CF 538 D. Flood Fill 递归 区间DP
link:https://codeforces.com/contest/1114/problem/D 题意: 给定一个数组,有不同的颜色,你可以从任意一个位置开始,改变颜色,相邻的是同一种颜色的位子的 ...
- selenium爬虫
Web自动化测试工具,可运行在浏览器,根据指令操作浏览器,只是工具,必须与第三方浏览器结合使用,相比于之前学的爬虫只是慢了一点而已.而且这种方法爬取的东西不用在意时候ajax动态加载等反爬机制.因此找 ...
- Python---环境以及编辑器的使用的学习
1.搭建python的环境 官网下载Python的安装程序,记住一点在安装的时候点一下下面的 Add Python 3.5 to PATH 它会自动给你把安装的python的环境加入到计算机的环境变量 ...
- SQL Server2008 inner join多种方式的实践
这些天的学习,才发现自己对SQL原来是如此的不了解.之前一直以为自己轻松应对各种复杂的SQL查询,但是一旦提到效率上,可能就比较傻眼了,有时候也会埋怨客户的服务器不好使. 至于Inner Join的三 ...