https://github.com/PacktPublishing/Unity-2018-Artificial-Intelligence-Cookbook-Second-Edition

1 Behaviors - Intelligent Movement

Behaviors – Intelligent Movement, explores some of the most interesting movement algorithms based on the steering behavior principles developed by Craig Reynolds and work from Ian Millington.

They act as a foundation for most of the AI used in advanced games and other algorithms that rely on movement, such as the family of path-finding algorithms.

2 Navigation

Navigation, covers path-finding algorithms for navigating complex scenarios.

It will include some ways of representing the world using different kinds of graph structure, and several algorithms for finding a path, each aimed to different situations.

3 Decision Making

Decision Making, explains different decision-making techniques that are flexible enough to adapt to different types of games, and robust enough to let us build modular decision-making systems.

4 The New NavMesh API

The New NavMesh API, shows the inner workings of the NavMesh API introduced in Unity 5.6, and explains how it enables us to grasp the power of the NavMesh engine and tune it in real time.

5 Coordination and Tactics

Coordination and Tactics, deals with a number of different recipes for coordinating different agents as a whole organism, such as formations and techniques that allow us make tactical decisions based on graphs, such as waypoints and influence maps.

6 Agent Awareness

Agent Awareness, explores different ways to simulate sense stimuli on an agent.

We will learn how to use tools we already know to create these simulations: colliders and graphs.

7 Board Games and Applied Search AI

Board Games and Applied Search AI, covers a family of algorithms for developing board games, as well as turn-based-game techniques for creating AI.

8 Learning Techniques

Learning Techniques, explores the field of machine learning. It will give us a great head-start in our endeavor to learn and apply machine learning techniques into our games.

9 Procedural Content Generation

Procedural Content Generation, explores different techniques for enabling replayability in our games by creating content procedurally.

It will give us some pointers in the right direction for different types of content.

10 Miscellaneous

Miscellaneous, introduces new techniques and uses algorithms that we will have learned in previous chapters to create new behaviors that don't quite fit in a definite category.

1 Behaviors - Intelligent Movement

In this chapter, we will develop AI algorithms for movement by covering the following recipes:

  • Creating the behaviors template
  • Pursuing and evading
  • Adjusting the agent for physics
  • Arriving and leaving
  • Facing objects
  • Wandering around
  • Following a path
  • Avoiding agents
  • Avoiding walls
  • Blending behaviors by weight
  • Blending behaviors by priority
  • Shooting a projectile
  • Predicting a projectile's landing spot
  • Targeting a projectile
  • Creating a jump system

  Introduction

  Creating the behaviors template

  Pursuing and evading

  Adjusting the agent for physics

  Arriving and leaving

  Facing objects

  Wandering around

  Following a path

  Avoiding agents

  Avoiding walls

  Blending behaviors by weight

  Blending behaviors by priority

  Shooting a projectile

  Predicting a projectile's landing spot

  Targeting a projectile

  Creating a jump system

2 Navigation

In this chapter, we will cover the following recipes:

  • Representing the world with grids
  • Representing the world with points of visibility
  • Representing the world with a self-made navigation mesh
  • Finding your way out of a maze with DFS
  • Finding the shortest path in a grid with BFS
  • Finding the shortest path with Dijkstra
  • Finding the best-promising path with A*
  • Improving A* for memory: IDA*
  • Planning navigation in several frames: time-sliced search
  • Smoothing a path

  Introduction

  Representing the world with grids

  Representing the world with points of visibility

  Representing the world with a self-made navigation mesh

  Finding your way out of a maze with DFS

  Finding the shortest path in a grid with BFS

  Finding the shortest path with Dijkstra

  Finding the best-promising path with A*

  Improving A* for memory – IDA*

  Planning navigation in several frames – time-sliced search

  Smoothing a path

3 Decision Making

In this chapter, we will cover the following recipes:

  • Choosing through a decision tree
  • Implementing a finite-state machine
  • Improving FSMs: hierarchical finite-state machines
  • Implementing behavior trees
  • Working with fuzzy logic
  • Making decisions with goal-oriented behaviors
  • Implementing a blackboard architecture
  • Experimenting with Unity's animation state machine

  Introduction

  Choosing through a decision tree

  Implementing a finite-state machine

  Improving FSMs: hierarchical finite-state machines

  Implementing behavior trees

  Working with fuzzy logic

  Making decisions with goal-oriented behaviors

  Implementing a blackboard architecture

  Experimenting with Unity's animation state machine

4 The New NavMesh API

In this chapter, we will learn how to make use of the new NavMesh API,through the following recipes:

  • Setting up the NavMesh building components
  • Creating and managing NavMesh for multiple types of agents
  • Creating and updating NavMesh data at runtime
  • Controlling the lifetime of the NavMesh instance
  • Connecting multiple instances of NavMesh
  • Creating dynamic NavMeshes with obstacles
  • Implementing some behaviors using the NavMesh API

  Introduction

  Setting up the NavMesh building components

  Creating and managing NavMesh for multiple types of agents

  Creating and updating NavMesh data at runtime

  Controlling the lifetime of the NavMesh instance

  Connecting multiple instances of NavMesh

  Creating dynamic NavMeshes with obstacles

  Implementing some behaviors using the NavMesh API

5 Coordination and Tactics

In this chapter, we will learn techniques for coordination and devising tactics:

  • Handling formations
  • Extending A* for coordination: A*mbush
  • Introducing waypoints by making a manual selector
  • Analyzing waypoints by height
  • Analyzing waypoints by cover and visibility
  • Creating waypoints automatically
  • Exemplifying waypoints for decision making
  • Implementing influence maps
  • Improving influence with map flooding
  • Improving influence with convolution filters
  • Building a fighting circle

  Introduction

  Handling formations

  Extending A* for coordination – A*mbush

  Analyzing waypoints by height

  Analyzing waypoints by cover and visibility

  Creating waypoints automatically

  Exemplifying waypoints for decision making

  Implementing influence maps

  Improving influence with map flooding

  Improving influence with convolution filters

  Building a fighting circle

6 Agent Awareness

In this chapter, we will learn some algorithm recipes for simulating senses and agent awareness:

  • The seeing function using a collider-based system
  • The hearing function using a collider-based system
  • The smelling function using a collider-based system
  • The seeing function using a graph-based system
  • The hearing function using a graph-based system
  • The smelling function using a graph-based system
  • Creating awareness in a stealth game

  Introduction

  The seeing function using a collider-based system

  The hearing function using a collider-based system

  The smelling function using a collider-based system

  The seeing function using a graph-based system

  The hearing function using a graph-based system

  The smelling function using a graph-based system

  Creating awareness in a stealth game

7 Board Games and Applied Search AI

In this chapter, you will learn a family of algorithms for developing board game AI:

  • Working with the game-tree class
  • Implementing Minimax
  • Implementing Negamax
  • Implementing AB Negamax
  • Implementing NegaScout
  • Implementing a Tic-Tac-Toe rival
  • Implementing a Checkers rival
  • Implementing Rock-Paper-Scissors AI with UCB1
  • Implementing Regret Matching

  Introduction

  Working with the game-tree class

  Implementing Minimax

  Implementing Negamax

  Implementing AB Negamax

  Implementing NegaScout

  Implementing a Tic-Tac-Toe rival

  Implementing a Checkers rival

  Implementing Rock-Paper-Scissors AI with UCB1

  Implementing regret matching

8 Learning Techniques

In this chapter, we will explore the world of machine learning through the following topics:

  • Predicting actions with an N-Gram predictor
  • Improving the predictor – Hierarchical N-Gram
  • Learning to use a Naïve Bayes classifier
  • Implementing reinforcement learning
  • Implementing artificial neural networks

  Introduction

  Predicting actions with an N-Gram predictor

  Improving the predictor – Hierarchical N-Gram

  Learning to use Naïve Bayes classifier

  Implementing reinforcement learning

  Implementing artificial neural networks

9 Procedural Content Generation

In this chapter, we will learn different techniques for procedural content generation with the following recipes:

  • Creating mazes with Depth-First Search
  • Implementing the constructive algorithm for dungeons and islands
  • Generating landscapes
  • Using N-Grams for content generation
  • Generating enemies with the evolutionary algorithm

  Introduction

  Creating mazes with Depth-First Search

  Implementing the constructive algorithm for dungeons and islands

  Generating landscapes

  Using N-Grams for content generation

  Generating enemies with the evolutionary algorithm

10 Miscellaneous

In this chapter, you will learn different techniques for:

  • Creating and managing Scriptable Objects
  • Handling random numbers better
  • Building an air-hockey rival
  • Implementing an architecture for racing games
  • Managing race difficulty using a rubber-band system

  Introduction

  Creating and managing Scriptable Objects

  Handling random numbers better

  Building an air-hockey rival

  Implementing an architecture for racing games

  Managing race difficulty using a rubber-band system

Unity 2018 Artificial Intelligence Cookbook Second Edition (Jorge Palacios 著)的更多相关文章

  1. Getting.Started.with.Unity.2018.3rd.Edition

    Getting Started with Unity 2018 - Third Edition: A Beginner's Guide to 2D and 3D game development wi ...

  2. Artificial Intelligence Research Methodologies 人工智能研究方法

    Computer Science An Overview _J. Glenn Brookshear _11th Edition To appreciate the field of artificia ...

  3. (转)A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers

    A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers. Updated 20 ...

  4. AI AND THE BOTTOM LINE: 15 EXAMPLES OF ARTIFICIAL INTELLIGENCE IN FINANCE

    https://builtin.com/artificial-intelligence/ai-finance-banking-applications-companies f there's one ...

  5. Artificial intelligence(AI)

    ORM: https://github.com/sunkaixuan/SqlSugar 微软DEMO: https://github.com/Microsoft/BotBuilder 注册KEY:ht ...

  6. (转) Artificial intelligence, revealed

    Artificial intelligence, revealed Yann LeCunJoaquin Quiñonero Candela It's 8:00 am on a Tuesday morn ...

  7. Unity Shaders and Effets Cookbook

    Unity Shaders and Effects Cookbook 最近在读 <Unity Shaders and Effects Cookbook> 中文名称:<Unity 着色 ...

  8. Artificial Intelligence Language

    Artificial Intelligence Language Objective We know, a true AI program should have ability to underst ...

  9. 拼写纠正 Artificial Intelligence: A Modern Approach

    Artificial Intelligence: A Modern Approach http://mindhacks.cn/2008/09/21/the-magical-bayesian-metho ...

随机推荐

  1. 新终端必须source /etc/profile的解决办法,同时解决变色问题

    Linux环境变量文件 /etc/profile:在登录时,操作系 统定制用户环境时使用的第一个文件 ,此文件为系统的每个用户设置环境信息,当用户第一次登录时,该文件被执行. /etc /enviro ...

  2. [ Python入门教程 ] Python文件基本操作_shutil模块

    shutil模块是对os模块中文件操作的补充,提供文件和目录的移动.复制.打包.压缩.解压等功能 shutil常用函数   shutil.copyfile(src, dst)   复制文件, 如果ds ...

  3. C# params 可变参数使用注意

    今天在一个 .NET Core 项目中调用一个自己实现的使用 params 可变参数的方法时触发了 null 引用异常,原以为是方法中没有对参数进行 null 值检查引起的,于是加上 check nu ...

  4. 用OC基于数组实现循环队列

    一.简言 使用数组实现循环队列时,始终会有一个空余的位置预留着,作为一个判决队列已满的条件(当然也可以采用其他方式).在前面已经用C++介绍了基本的算法,可以去回顾一下https://www.cnbl ...

  5. tf.contrib.slim模块简介

    原文连接:https://blog.csdn.net/MOU_IT/article/details/82717745 1.简介 对于tensorflow.contrib这个库,tensorflow官方 ...

  6. WEB-INF文件夹作用

    WEB-INF是Java的WEB应用的安全目录,客户端无法访问,只能通过服务端访问,从而实现了代码的安全.在WEB-INF中主要是系统运行的配置信息和环境 主要有classes.config.lib文 ...

  7. JVM垃圾回收器原理及使用介绍

    JVM垃圾回收器原理及使用介绍 垃圾收集基础 引用计数法(Reference Counting) 标记-清除算法(Mark-Sweep) 复制算法(Copying) 标记-压缩算法(Mark-Comp ...

  8. Android 布局测试

    wrap_content <Button android:id="@+id/button1" android:layout_width="wrap_content& ...

  9. Kotlin介绍(非原创)

    文章大纲 一.Kotlin简介二.Kotlin相比Java优势三.Kotlin与Java混合使用四.参考文章   一.Kotlin简介 1. 什么是Kotlin 安卓和Java,前者是最受欢迎的移动开 ...

  10. USB通信协议深入理解

    0. 基本概念 一个[传输](控制.批量.中断.等时):由多个[事务]组成: 一个[事务](IN.OUT.SETUP):由一多个[Packet]组成. USB数据在[主机软件]与[USB设备特定的端点 ...