.....好吧....最后一篇学习笔记的flag它倒了.....

好吧,这篇笔记也鸽了好久好久了...

比赛前刷模板,才想着还是补个坑吧...

FHQ,这个神仙(范浩强大佬),发明了这个神仙的数据结构,

首先,本篇博客使用洛谷普通平衡树为背景,即

  • 查找前驱
  • 查找后记
  • 查找kth的数
  • 查找k的排名
  • 插入一个数
  • 删除一个数

FHQ treap,是一个treap,它还是和treap一样,是tree+heap,所以它也有一个键值维护堆的性质。

它可以干任何treap和Splay能干的事。

它的实现主要由两个函数实现:

merge:把两棵树合并成一棵

split:把树分割成两棵

在这里介绍两个函数的实现方法:

merge

可以看到,它把两棵树合并了起来,但是并不是简单地接起来,而是打散,重新组合。

代码:

int merge(int x,int y)//把xy为根的两棵子树给合并
{
if(!x||!y)//如果一边没了
return x+y;//就返回
if(t[x].key<t[y].key)//维护key值,如果x的key值小于y的k值
{
t[x].son[]=merge(t[x].son[],y);//说明此时一定不符合堆性质,把x的右儿子和y合并
update(x);//更新相关变量
return x;//返回根节点
}
else
{
t[y].son[]=merge(x,t[y].son[]);//同上
update(y);
return y;
}
}

通过这样一个递归,不断拆分节点&&合并的过程中,就建立了一棵新树。

split:

从上图可得:(把树从5分开)

split的过程就是把树拆分成左右树,左树所有节点权值都小于k,右树的节点权值都大于k。

怎么实现呢?

代码:

void split(int now,int k,int &x,int &y)//把一棵树now给从k分割成x和y
{
if(!now) x=y=;//如果没有了,就返回
else
{
if(t[now].v<=k) //如果当前点的权值小于k,它应该在左子树
{
x=now;//更新
split(t[now].son[],k,t[now].son[],y);分割右儿子,找一个可能的更大的
}
else//同上
{
y=now;
split(t[now].son[],k,x,t[now].son[]);
}
update(now);
}
}

这样,我们就可以干以上的事了。

前置:查找kth

因为建立的事一个二叉查找树,所以还是可以像遍历二叉查找树那样查找kth的。

代码十分简单

int kth(int now,int k)
{
while()
{
if(k<=t[t[now].son[]].size)
now=t[now].son[];
else
{
if(k==t[t[now].son[]].size+)
return now;
else
{
k-=t[t[now].son[]].size+;
now=t[now].son[];
}
}
}
}

然后就可以A掉普通平衡树了。

插入新节点:首先暴力新建一个节点

int new_node(int k)
{
tot++;
t[tot].size=;
t[tot].v=k;
t[tot].key=rand();
return tot;
}

然后把树从k地方断开,把新节点看做一棵树,把它和上下树合在一起就行了

split(rt,a,x,y);
rt=merge(merge(x,new_node(a)),y);

删除节点:

把树从k断开,然后把左树从k-1断开,然后把上下树给合并,把k节点扔了就行了

split(rt,a,x,z);
split(x,a-,x,y);
y=merge(t[y].son[],t[y].son[]);
rt=merge(merge(x,y),z);

查找排名:

把树从k分开,则k所在的数的size即使排名

split(rt,a-,x,y);
printf("%d\n",t[x].size+);
rt=merge(x,y);

查找kth:

直接用kth函数即可

printf("%d\n",t[kth(rt,a)].v);

前驱:

把树从k分开,则size-1大小的那个kth点就是前驱

split(rt,a-,x,y);
printf("%d\n",t[kth(x,t[x].size)].v);
rt=merge(x,y);

后继:同上

split(rt,a,x,y);
printf("%d\n",t[kth(y,)].v);
rt=merge(x,y);

完整高清无码代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+;
struct tree
{
int son[],v,key,size;
}t[maxn];
int tot=,rt=;
void update(int p)
{
t[p].size=t[t[p].son[]].size+t[t[p].son[]].size+;
}
int new_node(int k)
{
tot++;
t[tot].size=;
t[tot].v=k;
t[tot].key=rand();
return tot;
}
int merge(int x,int y)//o?2¢ò?x£?y?a?ùμ?á???×óê÷
{
if(!x||!y)
return x+y;
if(t[x].key<t[y].key)
{
t[x].son[]=merge(t[x].son[],y);
update(x);
return x;
}
else
{
t[y].son[]=merge(x,t[y].son[]);
update(y);
return y;
}
}
void split(int now,int k,int &x,int &y)//ò?è¨?μk·?à?nowê÷3éx,y
{
if(!now) x=y=;
else
{
if(t[now].v<=k) //°??ùóDD?óúkμ?è¨?μμ??úμ?·?μ?ò???ê÷?D
{
x=now;
split(t[now].son[],k,t[now].son[],y);
}
else
{
y=now;
split(t[now].son[],k,x,t[now].son[]);
}
update(now);
}
}
int kth(int now,int k)
{
while()
{
if(k<=t[t[now].son[]].size)
now=t[now].son[];
else
{
if(k==t[t[now].son[]].size+)
return now;
else
{
k-=t[t[now].son[]].size+;
now=t[now].son[];
}
}
}
}
int x,y,z,n;
int main()
{
srand((unsigned)time(NULL));
scanf("%d",&n);
int flag,a,b,c;
for(int i=;i<=n;i++)
{
scanf("%d",&flag);
scanf("%d",&a);
if(flag==)
{
split(rt,a,x,y);
rt=merge(merge(x,new_node(a)),y);
}
if(flag==)
{
split(rt,a,x,z);
split(x,a-,x,y);
y=merge(t[y].son[],t[y].son[]);
rt=merge(merge(x,y),z);
}
if(flag==)
{
split(rt,a-,x,y);
printf("%d\n",t[x].size+);
rt=merge(x,y);
}
if(flag==)
{
printf("%d\n",t[kth(rt,a)].v);
}
if(flag==)
{
split(rt,a-,x,y);
printf("%d\n",t[kth(x,t[x].size)].v);
rt=merge(x,y);
}
if(flag==)
{
split(rt,a,x,y);
printf("%d\n",t[kth(y,)].v);
rt=merge(x,y);
}
}
return ;
}

FHQ treap学习(复习)笔记的更多相关文章

  1. fhq treap 学习笔记

    序 今天心血来潮,来学习一下fhq treap(其实原因是本校有个OIer名叫fh,当然不是我) 简介 fhq treap 学名好像是"非旋转式treap及可持久化"...听上去怪 ...

  2. 强化学习复习笔记 - DEEP

    Outline 激活函数 使用逼近器的特点: 较少数量的参数表达复杂的函数 (计算复杂度) 对一个权重的调整可以影响到很多的点 (泛化能力) 多种特征表示和逼近器结构 (多样性) 激活函数 Sigmo ...

  3. 「FHQ Treap」学习笔记

    话说天下大事,就像fhq treap —— 分久必合,合久必分 简单讲一讲.非旋treap主要依靠分裂和合并来实现操作.(递归,不维护fa不维护cnt) 合并的前提是两棵树的权值满足一边的最大的比另一 ...

  4. 「学习笔记」 FHQ Treap

    FHQ Treap FHQ Treap (%%%发明者范浩强年年NOI金牌)是一种神奇的数据结构,也叫非旋Treap,它不像Treap zig zag搞不清楚(所以叫非旋嘛),也不像Splay完全看不 ...

  5. Fhq Treap [FhqTreap 学习笔记]

    众所周知 Fhq Treap 是 fhq 神仙研究出来的平衡树- 具体实现 每个点实现一个 \(\text{rnd}\) 表示 rand 的值 为什么要 rand 呢 是为了保证树高为 \(\log ...

  6. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ

    第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...

  7. treap学习笔记

    treap是个很神奇的数据结构. 给你一个问题,你可以解决它吗? 这个问题需要treap这个数据结构. 众所周知,二叉查找树的查找效率低的原因是不平衡,而我们又不希望用各种奇奇怪怪的旋转来使它平衡,那 ...

  8. fhq treap抄袭笔记

    目录 碎碎念 点一下 注意!!! 模板 fhq treap 碎碎念 我咋感觉合并这么像左偏树呢 ps:难道你们的treap都是小头堆的吗 fhq真的是神人 现在看以前学的splay是有点恶心,尤其是压 ...

  9. fhq treap最终模板

    新学习了fhq treap,厉害了 先贴个神犇的版, from memphis /* Treap[Merge,Split] by Memphis */ #include<cstdio> # ...

随机推荐

  1. jsp隐含对象(内置对象)

    JSP共有以下9个内置的对象: request HttpServletRequest类的实例,用户端请求,此请求会包含来自GET/POST请求的参数 response HttpServletRespo ...

  2. 52个有效方法(4) - 多用类型常量,少用#define预处理指令

    局部常量 在实现文件中使用 static const 来定义"只在编译单元内可见的常量"(translation-unit-specific constant).其命名规则为在前面 ...

  3. SQL server数据库系统部分常用的存储过程及说明

    --SQL server数据库系统常用的存储过程 exec sp_databases --能看到所有具有权限的数据库名,大小和备注 exec sp_helpdb --数据库名,大小,管理员,创建时间状 ...

  4. 爬虫破解知乎登入(不使用Selenium模块)

    一.分析 知乎完成登入的步骤 首先获得cookies(如果不获得后面验证码无法获得) 获得验证码 提交登入相关内容 前两步简单稍微细心寻找规律即可 其中最难的是第三步应该他前端进行了js加密 这里没什 ...

  5. 讲真,MySQL索引优化看这篇文章就够了

    本文主要讨论MySQL索引的部分知识.将会从MySQL索引基础.索引优化实战和数据库索引背后的数据结构三部分相关内容,下面一一展开. 一.MySQL——索引基础 首先,我们将从索引基础开始介绍一下什么 ...

  6. caffe中batch norm源码阅读

    1. batch norm 输入batch norm层的数据为[N, C, H, W], 该层计算得到均值为C个,方差为C个,输出数据为[N, C, H, W]. <1> 形象点说,均值的 ...

  7. Python开发【第七篇】列表

    问题:当我们要用一系列数字的时候,我们需要将数字进行存储,我们就需要找个容器把数字装起来,我们需要用的时候再拿出来.如何将计算机运算的数据存储在一个地方,同时方便 对数据进行 增.删.改.查 列表 列 ...

  8. wait,notify,notifyAll详细介绍

    https://www.cnblogs.com/pangyang/articles/5916349.html

  9. ssh-keygen创建证书

    ssh-keygen安装请参考以下内容:https://blog.csdn.net/a419419/article/details/80021684 (可能我已经安装过git了,所以不需要安装,具体细 ...

  10. CSAPP: 位操作实现基本运算

    目录 实验要求 实现代码 1.pow2plus1 2.pow2plus4 3.bitXor 4.tmin 5.isTmax 6.allOddBits 7.negate 8.isAsciiDigit 9 ...