一、缓存命中率

1、引子

1、我们想利用缓存来提升程序的运行效率,应该怎么评估这个效果呢?

用衡量缓存好坏的指标

2、有没有哪个指标可以衡量缓存使用的好坏呢?

缓存命中率

3、什么是缓存命中率?

所谓缓存命中率,是指直接通过缓存获取数据的请求次数,占所有数据请求次数的百分比。命中率越高,表示使用缓存带来的收益越高,应用程序的性能也就越好

2、查看系统命中情况的工具

1、缓存在高并发系统的应用

实际上、缓存是现在所有高并发系统必须的核心模块,主要作用就是把经常访问的数据(也就是热点数据),提取读入到内存中,这样下次访问时就可以直接从内存读取数据,而不需要过硬盘,从而加快应用程序的响应速度

这些独立的缓存模块通常会提供查询接口,方便我们随时查看缓存的命中率率。不过Linux系统中并没有直接提供这些接口,
所以我这里介绍一下cachestat 和 cachetop它们正是查看系统缓存命中情况的工具。

2、查看系统命中情况的工具

cachestat 提供了整个操作系统缓存的读写命中情况。

cachetop 提供了每个进程的缓存命中情况。

这两个工具都是 bcc 软件包的一部分,它们基于 Linux 内核的 eBPF(extended Berkeley PacketFilters)机制,来跟踪内核中管理的缓存,并输出缓存的使...

3、cachestat和cachetop的使用方法

在 Ubuntu 系统中

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 4052245BD4284CDD
echo "deb https://repo.iovisor.org/apt/xenial xenial main" | sudo tee /etc/apt/sources.list.d/iovisor.list
sudo apt-get update
sudo apt-get install -y bcc-tools libbcc-examples linux-headers-$(uname -r)

操作完这些步骤,bcc 提供的所有工具就都安装到 /usr/share/bcc/tools 这个目录中了。不过这里提醒你,bcc 软件包默认不会把这些工具配置到系统的的 PATH 路径中,所以你得自己手动配置:

export PATH=$PATH:/usr/share/bcc/tools

cachestat 的运行界面,它以 1 秒的时间间隔,输出了 3 组缓存统计数据:

cachestat 1 3
TOTAL MISSES HITS DIRTIES BUFFERS_MB CACHED_MB
2 0 2 1 17 279
2 0 2 1 17 279
2 0 2 1 17 279

cachetop

cachetop
11:58:50 Buffers MB: 258 / Cached MB: 347 / Sort: HITS / Order: ascending
PID UID CMD HITS MISSES DIRTIES READ_HIT% WRITE_HIT%
13029 root python 1 0 0 100.0% 0.0%

它的输出跟 top 类似,默认按照缓存的命中次数(HITS)排序,展示了每个进程的缓存命中情况。具体到每一个指标,

这里的 HITS、MISSES 和 DIRTIES ,跟cachestat 里的含义一样,分别代表间隔时间内的缓存命中次数、未命中次数以及新增到缓存中的脏页数。

而 READ_HIT 和 WRITE_HIT ,分别表示读和写的缓存命中率

二、指定文件的缓存大小

除了缓存的命中率外,还有一个指标你可能也会很感兴趣,那就是指定文件在内存中的缓存大小。你可以使用 pcstat这个工具,来查看文件在内存中的缓存大小以及缓存比例。

pcstat 是一个基于 Go 语言开发的工具,所以安装它之前,你首先应该安装 Go 语言,你可以点击这里下载安装。

安装完 Go 语言,再运行下面的命令安装 pcstat:

export GOPATH=~/go
$ export PATH=~/go/bin:$PATH
$ go get golang.org/x/sys/unix
$ go get github.com/tobert/pcstat/pcstat

/bin/ls 这个文件的缓存情况:

pcstat /bin/ls
+---------+----------------+------------+-----------+---------+
| Name | Size (bytes) | Pages | Cached | Percent |
|---------+----------------+------------+-----------+---------|
| /bin/ls | 133792 | 33 | 0 | 000.000 |
+---------+----------------+------------+-----------+---------+

如果你执行一下 ls 命令,再运行相同的命令来查看的话,就会发现 /bin/ls 都在缓存中了:

ls
$ pcstat /bin/ls
+---------+----------------+------------+-----------+---------+
| Name | Size (bytes) | Pages | Cached | Percent |
|---------+----------------+------------+-----------+---------|
| /bin/ls | 133792 | 33 | 33 | 100.000 |
+---------+----------------+------------+-----------+---------+

知道了缓存相应的指标和查看系统缓存的方法后我们就开始施展了

三、案例一

1、然后,使用 dd 命令生成一个临时文件,用于后面的文件读取测试:

# 生成一个 512MB 的临时文件
$ dd if=/dev/sda1 of=file bs=1M count=512
# 清理缓存
$ echo 3 > /proc/sys/vm/drop_caches

2、确认刚刚生成的文件不在缓存中(终端一)

pcstat file
+-------+----------------+------------+-----------+---------+
| Name | Size (bytes) | Pages | Cached | Percent |
|-------+----------------+------------+-----------+---------|
| file | 536870912 | 131072 | 0 | 000.000 |
+-------+----------------+------------+-----------+---------+

3、运行 cachetop 命令

# 每隔 5 秒刷新一次数据
$ cachetop 5

4、查看cachetop界面的缓存命中情况(终端一)

PID UID CMD HITS MISSES DIRTIES READ_HIT% WRITE_HIT%
\.\.\.
3264 root dd 37077 37330 0 49.8% 50.2%

实验二

5、运行dd命令测试文件的读取速度(终端二)

dd if=file of=/dev/null bs=1M
512+0 records in
512+0 records out
536870912 bytes (537 MB, 512 MiB) copied, 16.0509 s, 33.4 MB/s

6、终端一 查看cachetop界面的缓存命中情况(终端一)

10:45:22 Buffers MB: 4 / Cached MB: 719 / Sort: HITS / Order: ascending
PID UID CMD HITS MISSES DIRTIES READ_HIT% WRITE_HIT%
\.\.\.
32642 root dd 131637 0 0 100.0% 0.0%

7、运行dd命令测试文件的读取速度(终端二)

dd if=file of=/dev/null bs=1M
512+0 records in
512+0 records out
536870912 bytes (537 MB, 512 MiB) copied, 0.118415 s, 4.5 GB/s

8、再回到第一个终端查看cachetop 的情况

10:45:22 Buffers MB: 4 / Cached MB: 719 / Sort: HITS / Order: ascending
PID UID CMD HITS MISSES DIRTIES READ_HIT% WRITE_HIT%
\.\.\.
32642 root dd 131637 0 0 100.0% 0.0%

9、回到第二个终端,再次执行 pcstat 查看文件file 的缓存情况:

pcstat file
+-------+----------------+------------+-----------+---------+
| Name | Size (bytes) | Pages | Cached | Percent |
|-------+----------------+------------+-----------+---------|
| file | 536870912 | 131072 | 131072 | 100.000 |
+-------+----------------+------------+-----------+---------+

四、案例二

1、第一个终端运行

# 每隔 5 秒刷新一次数据
$ cachetop 5

2、第二个终端运行案例

docker run --privileged --name=app -itd feisky/app:io-direct

3、确认案例已经正常启动终端二

docker logs app
Reading data from disk /dev/sdb1 with buffer size 33554432
Time used: 0.929935 s to read 33554432 bytes
Time used: 0.949625 s to read 33554432 bytes

4、回到第一个终端,先看看 cachetop 的输出

16:39:18 Buffers MB: 73 / Cached MB: 281 / Sort: HITS / Order: ascending
PID UID CMD HITS MISSES DIRTIES READ_HIT% WRITE_HIT%
21881 root app 1024 0 0 100.0% 0.0%

5、继续在第二个终端

# strace -p $(pgrep app)
strace: Process 4988 attached
restart_syscall(<\.\.\. resuming interrupted nanosleep \.\.\.>) = 0
openat(AT_FDCWD, "/dev/sdb1", O_RDONLY|O_DIRECT) = 4
mmap(NULL, 33558528, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f448d240000
read(4, "8vq\213\314\264u\373\4\336K\224\25@\371\1\252\2\262\252q\221\n0\30\225bD\252\266@J"\.\.\., 33554432) = 33554432
write(1, "Time used: 0.948897 s to read 33"\.\.\., 45) = 45
close(4) = 0

6、案例应用源代码

int flags = O_RDONLY | O_LARGEFILE | O_DIRECT;
int fd = open(disk, flags, 0755);

7、运行修复后应用

# 删除上述案例应用
$ docker rm -f app # 运行修复后的应用
$ docker run --privileged --name=app -itd feisky/app:io-cached

8、在第二个终端查看应用程序

docker logs app
Reading data from disk /dev/sdb1 with buffer size 33554432
Time used: 0.037342 s s to read 33554432 bytes
Time used: 0.029676 s to read 33554432 bytes

9、在回到第一个终端 cachetop

16:40:08 Buffers MB: 73 / Cached MB: 281 / Sort: HITS / Order: ascending
PID UID CMD HITS MISSES DIRTIES READ_HIT% WRITE_HIT%
22106 root app 40960 0 0 100.0% 0.0%

四、总结

Buffers 和 Cache 都是操作系统来管理的,应用程序并不能直接控制这些缓存的内容和生命周期。

所以,在应用程序开发中,一般要用专门的缓存组件,来进一步提升性能。

比如,程序内部可以使用堆或者栈明确声明内存空间,来存储需要缓存的数据。

再或者,使用 Redis 这类外部缓存服务,优化数据的访问效率。

Linux性能优化实战学习笔记:第十七讲的更多相关文章

  1. Linux性能优化实战学习笔记:第四十一讲

    一.上节回顾 上一节,我们探究了网络延迟增大问题的分析方法,并通过一个案例,掌握了如何用hping3.tcpdump.Wireshark.strace 等工具,来排查和定位问题的根源. 简单回顾一下, ...

  2. Linux性能优化实战学习笔记:第九讲

    一.中断的魅力 1.中断在生活的魅力 比如你订了一份外卖,但是不确定外卖什么时候送到,也没有别的方法了解外卖的进度,但是,配送员送外卖是不等人的,到了你这儿没人取的话,就直接走人了.所以你指能苦苦等着 ...

  3. Linux性能优化实战学习笔记:第五十七讲

    一.上节回顾 上一节,我带你一起梳理了常见的性能优化思路,先简单回顾一下.我们可以从系统和应用程序两个角度,来进行性能优化. 从系统的角度来说,主要是对 CPU.内存.网络.磁盘 I/O 以及内核软件 ...

  4. Linux性能优化实战学习笔记:第四十五讲

    一.上节回顾 专栏更新至今,四大基础模块的最后一个模块——网络篇,我们就已经学完了.很开心你还没有掉队,仍然在积极学习思考和实践操作,热情地留言和互动.还有不少同学分享了在实际生产环境中,碰到各种性能 ...

  5. Linux性能优化实战学习笔记:第三十二讲

    一.上节总结 专栏更新至今,四大基础模块的第三个模块——文件系统和磁盘 I/O 篇,我们就已经学完了.很开心你还没有掉队,仍然在积极学习思考和实践操作,并且热情地留言与讨论. 今天是性能优化的第四期. ...

  6. Linux性能优化实战学习笔记:第三十六讲

    一.上节总结回顾 上一节,我们回顾了经典的 C10K 和 C1000K 问题.简单回顾一下,C10K 是指如何单机同时处理 1 万个请求(并发连接 1 万)的问题,而 C1000K 则是单机支持处理 ...

  7. Linux性能优化实战学习笔记:第四十三讲

    一.上节回顾 上一节,我们了解了 NAT(网络地址转换)的原理,学会了如何排查 NAT 带来的性能问题,最后还总结了 NAT 性能优化的基本思路.我先带你简单回顾一下. NAT 基于 Linux 内核 ...

  8. Linux性能优化实战学习笔记:第四十四讲

    一.上节回顾 上一节,我们学了网络性能优化的几个思路,我先带你简单复习一下. 在优化网络的性能时,你可以结合 Linux 系统的网络协议栈和网络收发流程,然后从应用程序.套接字.传输层.网络层再到链路 ...

  9. Linux性能优化实战学习笔记:第五十二讲

    一.上节回顾 上一节,我们一起学习了怎么使用动态追踪来观察应用程序和内核的行为.先简单来回顾一下.所谓动态追踪,就是在系统或者应用程序还在正常运行的时候,通过内核中提供的探针,来动态追踪它们的行为,从 ...

  10. Linux性能优化实战学习笔记:第五十五讲

    一.上节回顾 上一节,我们一起学习了,应用程序监控的基本思路,先简单回顾一下.应用程序的监控,可以分为指标监控和日志监控两大块. 指标监控,主要是对一定时间段内的性能指标进行测量,然后再通过时间序列的 ...

随机推荐

  1. python统计wav文件的时长

    import wave import os.path # 音频存放文件夹绝对路径 filedir = '/Users/111/PycharmProjects/TextClassify/wav' lis ...

  2. 单个视频播放控制&默认横屏播放

    一.视频列表中控制只允许一个视频播放 // 获取DOM中所有的video标签 var videoTags = document.querySelectorAll('video'); // 控制播放的视 ...

  3. Anaconda--在虚拟环境中安装CUDA and cudnn

    在conda虚拟环境中安装CUDAconda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs ...

  4. Redis2.8之后主从复制的流程

    梳理一下Redis2.8之后主从复制的流程:

  5. 一个简单的利用 WebClient 异步下载的示例(二)

    继上一篇 一个简单的利用 WebClient 异步下载的示例(一) 后,我想把核心的处理提取出来,成 SkyWebClient,如下: 1. SkyWebClient 该构造函数中 downloadC ...

  6. C# 刷遍 Leetcode 面试题系列连载(3): No.728 - 自除数

    前文传送门: C#刷遍Leetcode面试题系列连载(1) - 入门与工具简介 C#刷遍Leetcode面试题系列连载(2): No.38 - 报数 系列教程索引 传送门:https://enjoy2 ...

  7. sso单点登录的入门(Session跨域、Spring-Session共享)

    1.单点登录,就是多系统,单一位置登录,实现多系统同时登录的一种技术.单点登录一般是用于互相授信的系统,实现单一位置登录,全系统有效的. 区分与三方登录(第三方登录) ,三方登录:某系统,使用其他系统 ...

  8. 打开centos7图形化窗口

    1. yum groupinstall "X Window System" 2. export DISPLAY=172.16.4.240:0.0 3. yum -y install ...

  9. C#工具类SqlServerHelper,基于System.Data.SqlClient封装

    源码: using System; using System.Collections.Generic; using System.Data; using System.Linq; using Syst ...

  10. Linux用户和权限——管理文件权限的命令

    Linux用户和权限——管理文件权限的命令 摘要:本文主要学习了Linux中修改文件权限的命令. chown命令 chown命令,主要用于修改文件(或目录)的所有者,除此之外,这个命令也可以修改文件( ...