大师Geoff Hinton关于Deep Neural Networks的建议
大师Geoff Hinton关于Deep Neural Networks的建议
Note: This covers suggestions from Geoff Hinton’s talk given at UBC which was recorded May 30, 2013. It does not cover bleeding edge techniques.
主要分为如下几点展开:
- Have a Deep Network.
1-2个hidden layers被认为是一个shallow network,浅浅的神经网络,当hidden layers数量多时,会造成local optima,缺乏数据等。
因为deep neural network相比shallow neural network,最大的区别就是greater representational power,这个能力随着layer的增加而增加。
PS:理论上,只有一个单层hidden layer但是有很多unit的神经网络(large breadth,宽度,not deep),具有与deeper network相似的representational power,但是目前还不知道有哪种方法来训练这样的network。
- Pretrain if you do not have a lot of unlabelled training data. If you do skip it.
pre-training 又叫做greedy layer-wise training,如果没有足够的标签样本就需要执行greedy layer-wise pretraining,如果有足够多的样本,只需执行正常的full network stack 的训练即可。
pre-training可以让parameters能够站在一个较好的初始值上,当你有足够的无标签样本时,这一点就无意义了。
Side Note: An interesting paper shows that unsupervised pretraining encourages sparseness in DNN. Link is here.
- Initialize the weight to sensible values.
可以将权重设置为小的随机数,这些小随机数权重的分布取决于在network中使用的nonlinearity,如果使用的是rectified linear units,可以设置为小的正数。
- Use rectified linear units.
可以参看我的博文《修正线性单元(Rectified linear unit,ReLU)》
It makes calculating the gradient during back propagation trivial. It is 0 if x < 0 and 1 elsewhere. This speeds up the training of the network.
![]()
ReLU units are more biologically plausible then the other activation functions, since they model the biological neuron’s responses in their area of operation. While sigmoid and tanh activation functions are biologically implausible. A sigmoid has a steady state of around 12 and after initlizing with small weights fire at half their saturation potential.
- Have many more parameters than training examples.
确保整个参数的数量(a single weight in your network counts as one parameter)超过训练样本的数量一大截,总是使得neural network overfit,然后强力的regularize它,比如,一个例子是有1000个训练样本,须有1百万个参数。
这样做的理由是模仿大脑的机制,突触的数量要比经验多得多,在一次活动中,只不过大部分都没有激活。
- Use dropout to regularize it instead of L1 and L2 regularization.
dropout是一项用来在一个隐含层中丢掉或者遗漏某些隐含单元的技术,每当训练样本被送入network时就发生。随机从隐含层中进行子采样。一种不同的架构是all sharing weights。
这是一种模型平均或者近似的形式,是一种很强的regularization方法,不像常用的L1或者L2 regularization将参数拉至0,subsample或者sharing weights使参数拉至合理的值。比较neat。
- Convolutional Frontend (optional)
如果数据包含任何空间结构信息,比如voice,images,video等,可以使用卷积前段。
可以参看我的博文《卷积神经网络(CNN)》
卷积可以看作诗一个滤波器,算子等,可以从原始的pixel等中抽取边缘等特征,或者表示与卷积核的相似度等等。采用卷积可以对空间信息进行编码。
参考文献:
http://343hz.com/general-guidelines-for-deep-neural-networks/
2015-9-11 艺少
大师Geoff Hinton关于Deep Neural Networks的建议的更多相关文章
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- On Explainability of Deep Neural Networks
On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...
- Classifying plankton with deep neural networks
Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...
- (Deep) Neural Networks (Deep Learning) , NLP and Text Mining
(Deep) Neural Networks (Deep Learning) , NLP and Text Mining 最近翻了一下关于Deep Learning 或者 普通的Neural Netw ...
- Must Know Tips/Tricks in Deep Neural Networks
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) Deep Neural Networks, especially C ...
- Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...
- (转)Understanding, generalisation, and transfer learning in deep neural networks
Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017 Thi ...
- 为什么深度神经网络难以训练Why are deep neural networks hard to train?
Imagine you're an engineer who has been asked to design a computer from scratch. One day you're work ...
- 论文翻译:2018_Source localization using deep neural networks in a shallow water environment
论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关 ...
随机推荐
- Excel、CSV文件处理
1.Excel中以\t做为列分隔符,换行符作为行分隔符 使用c#导出excel的时候,当数字太长时,如身份证号,导出后的excel就会显示为科学计数法.如“511122154712121000”会显示 ...
- 百度UEditor富文本插件的使用
这个富文本还是功能挺全的. 官方文档地址 下载地址 常用接口 较完整代码仓库 UEditor下载后直接运行即可访问,但在上传文件时需要单独再做配置. [很详细的SpringBoot整合UEditor教 ...
- codevs 1683 车厢重组
1683 车厢重组 时间限制: 1 s 空间限制: 1000 KB 题目等级 : 白银 Silver 题目描述 Description 在一个旧式的火车站旁边有一座桥,其桥面可以绕河中心的桥 ...
- lixuxmint系统定制与配置(4)-应用安装
小书匠Linux 先简单列一下,其实每个软件都有自己的个性化配置,以后有时间了,逐个记录下来.编程主力环境是Python,编辑器使用Jupyter,这个编辑器是在远程服务器启动,映射端口到本地来编辑. ...
- 《挑战30天C++入门极限》图例实解:C++中类的继承特性
图例实解:C++中类的继承特性 整个c++程序设计全面围绕面向对象的方式进行,类的继承特性是c++的一个非常非常重要的机制,继承特性可以使一个新类获得其父类的操作和数据结构,程序员只需在新类中 ...
- python 装饰器demo
本质就是一个函数,这个函数符合闭包语法结构,可以在函数不需要改变任何代码情况下增加额外功装饰器的返回值是一个函数的引用 功能:1.引入日志:2.函数执行时间统计:3.执行函数前预备处理:4.执行函数后 ...
- SQL Server 2008R2安装
SQL Server 2008详细安装过程及配置 https://www.cnblogs.com/rewwensoftware/p/9580697.html SQL Server 2008R2 百 ...
- Lombok:小辣椒的安装与使用
0.简介 Lombok是一个可以通过简单的注解形式来帮助我们简化消除一些必须有但显得很臃肿的Java代码的工具, 通过使用对应的注解,可以在编译源码的时候生成对应的方法,官网有详细的使用说明和视频. ...
- docker run 参数含义
-a stdin: 指定标准输入输出内容类型,可选 STDIN/STDOUT/STDERR 三项: -d: 后台运行容器,并返回容器ID: -i: 以交互模式运行容器,通常与 -t 同时使用: ...
- <英狼> 团队作业2--王者光耀
队员 陶俊宇_031702113 卞永亨_031702229 唐怡_031702109 Github 吉哈---King-Shines