大师Geoff Hinton关于Deep Neural Networks的建议


Note: This covers suggestions from Geoff Hinton’s talk given at UBC which was recorded May 30, 2013. It does not cover bleeding edge techniques.

主要分为如下几点展开:


  • Have a Deep Network.

    1-2个hidden layers被认为是一个shallow network,浅浅的神经网络,当hidden layers数量多时,会造成local optima,缺乏数据等。

    因为deep neural network相比shallow neural network,最大的区别就是greater representational power,这个能力随着layer的增加而增加。

PS:理论上,只有一个单层hidden layer但是有很多unit的神经网络(large breadth,宽度,not deep),具有与deeper network相似的representational power,但是目前还不知道有哪种方法来训练这样的network。


  • Pretrain if you do not have a lot of unlabelled training data. If you do skip it.

    pre-training 又叫做greedy layer-wise training,如果没有足够的标签样本就需要执行greedy layer-wise pretraining,如果有足够多的样本,只需执行正常的full network stack 的训练即可。

    pre-training可以让parameters能够站在一个较好的初始值上,当你有足够的无标签样本时,这一点就无意义了。

Side Note: An interesting paper shows that unsupervised pretraining encourages sparseness in DNN. Link is here.


  • Initialize the weight to sensible values.

    可以将权重设置为小的随机数,这些小随机数权重的分布取决于在network中使用的nonlinearity,如果使用的是rectified linear units,可以设置为小的正数。

It makes calculating the gradient during back propagation trivial. It is 0 if x < 0 and 1 elsewhere. This speeds up the training of the network.



ReLU units are more biologically plausible then the other activation functions, since they model the biological neuron’s responses in their area of operation. While sigmoid and tanh activation functions are biologically implausible. A sigmoid has a steady state of around 12 and after initlizing with small weights fire at half their saturation potential.


  • Have many more parameters than training examples.

    确保整个参数的数量(a single weight in your network counts as one parameter)超过训练样本的数量一大截,总是使得neural network overfit,然后强力的regularize它,比如,一个例子是有1000个训练样本,须有1百万个参数。

这样做的理由是模仿大脑的机制,突触的数量要比经验多得多,在一次活动中,只不过大部分都没有激活。


  • Use dropout to regularize it instead of L1 and L2 regularization.

    dropout是一项用来在一个隐含层中丢掉或者遗漏某些隐含单元的技术,每当训练样本被送入network时就发生。随机从隐含层中进行子采样。一种不同的架构是all sharing weights。

这是一种模型平均或者近似的形式,是一种很强的regularization方法,不像常用的L1或者L2 regularization将参数拉至0,subsample或者sharing weights使参数拉至合理的值。比较neat。


  • Convolutional Frontend (optional)

    如果数据包含任何空间结构信息,比如voice,images,video等,可以使用卷积前段。

    可以参看我的博文《卷积神经网络(CNN)

卷积可以看作诗一个滤波器,算子等,可以从原始的pixel等中抽取边缘等特征,或者表示与卷积核的相似度等等。采用卷积可以对空间信息进行编码。

参考文献:

http://343hz.com/general-guidelines-for-deep-neural-networks/


2015-9-11 艺少

大师Geoff Hinton关于Deep Neural Networks的建议的更多相关文章

  1. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  2. On Explainability of Deep Neural Networks

    On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...

  3. Classifying plankton with deep neural networks

    Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...

  4. (Deep) Neural Networks (Deep Learning) , NLP and Text Mining

    (Deep) Neural Networks (Deep Learning) , NLP and Text Mining 最近翻了一下关于Deep Learning 或者 普通的Neural Netw ...

  5. Must Know Tips/Tricks in Deep Neural Networks

    Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)   Deep Neural Networks, especially C ...

  6. Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)

    http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...

  7. (转)Understanding, generalisation, and transfer learning in deep neural networks

    Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   Thi ...

  8. 为什么深度神经网络难以训练Why are deep neural networks hard to train?

    Imagine you're an engineer who has been asked to design a computer from scratch. One day you're work ...

  9. 论文翻译:2018_Source localization using deep neural networks in a shallow water environment

    论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关 ...

随机推荐

  1. h5页面滑动卡顿解决方法

    解决方式: 给滚动的元素加样式:-webkit-overflow-scrolling: touch; -webkit-overflow-scrolling(允许独立的滚动区域和触摸回弹) 如果值为au ...

  2. 2019acm山东省赛C题

    传送门:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4115 昨天赛场上只想到了一种情况:最远点一定是在最后一次循环中产生 ...

  3. secureCRT连接服务器和文件传输( 一步搞定)

    1.在百度云盘存有此工具,获取到后解压执行即可,如下2 连接目标服务器 192.xxx.xx.xx 2.secureCRT连接服务器和文件传输 ,现象如下 登录后切换到root用户即可有权限操作    ...

  4. 【随记】安装SQL Server 2008 R2 提示创建usersettings/microsoft.sqlserver.configuration.landingpage.properties.se

    在安装SQL Server 2008 R2 提示创建usersettings/microsoft.sqlserver.configuration.landingpage.properties.se.. ...

  5. Java学习之"Hello World"

    好像学习每个程序敲的第一个代码都是"Hello World",而学习Java也不例外,这篇博客就讲一下我学习Java的第一个程序HelloWorld.java 程序代码: publ ...

  6. Java8中LocalDate的使用---项目中日期处理

    // 获取当前日期 LocalDate now = LocalDate.now(); // 设置日期 LocalDate now2 = LocalDate.of(2099, 2, 28); // 解析 ...

  7. JVM(一) ---JVM的数据模型

    JVM的逻辑内存模型图 [逻辑内存模型图] ----- JVM内部分区 其实JVM内部不仅仅只有栈和堆 包括 程序计数器 . Java 虚拟机栈 .本地方法栈.Java 堆.方法区等 1. 程序计数器 ...

  8. NGUI: Next-Gen UI 2018.3.0f

    https://assetstore.unity.com/packages/tools/gui/ngui-next-gen-ui-2413 NGUI is a very powerful UI sys ...

  9. python oracle 写文件 多个SQL变量问题

  10. 目录窗口多选Multiple Select in Catalog Window or arccatalog

    目录窗口多选Multiple Select in Catalog Window or arccatalog 商务合作,科技咨询,版权转让:向日葵,135-4855__4328,xiexiaokui#q ...