Flume(一) —— 启动与基本使用
基础架构
Flume is a distributed, reliable(可靠地), and available service for efficiently(高效地) collecting, aggregating, and moving large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with tunable reliability mechanisms and many failover and recovery mechanisms. It uses a simple extensible data model that allows for online analytic application.
Flume是一个分布式、高可靠、高可用的服务,用来高效地采集、聚合和传输海量日志数据。它有一个基于流式数据流的简单、灵活的架构。

A Flume source consumes events delivered to it by an external source like a web server. The external source sends events to Flume in a format that is recognized by the target Flume source. For example, an Avro Flume source can be used to receive Avro events from Avro clients or other Flume agents in the flow that send events from an Avro sink. A similar flow can be defined using a Thrift Flume Source to receive events from a Thrift Sink or a Flume Thrift Rpc Client or Thrift clients written in any language generated from the Flume thrift protocol.When a Flume source receives an event, it stores it into one or more channels. The channel is a passive store that keeps the event until it’s consumed by a Flume sink. The file channel is one example – it is backed by the local filesystem. The sink removes the event from the channel and puts it into an external repository like HDFS (via Flume HDFS sink) or forwards it to the Flume source of the next Flume agent (next hop) in the flow. The source and sink within the given agent run asynchronously with the events staged in the channel.
Flume在下图中的作用是,实时读取服务器本地磁盘的数据,将数据写入到HDFS中。

Agent
是一个JVM进程,以事件的形式将数据从源头送至目的地。
Agent的3个主要组成部分:Source、Channel、Sink。
Source
负责接收数据到Agent。
Sink
不断轮询Channel,将Channel中的数据移到存储系统、索引系统、另一个Flume Agent。
Channel
Channel是Source和Sink之间的缓冲区,可以解决Source和Sink处理数据速率不匹配的问题。
Channel是线程安全的。
Flume自带的Channel:Memory Channel、File Channel、Kafka Channel。
Event
Flume数据传输的基本单元。
安装&部署
下载
下载1.7.0安装包
修改配置
修改flume-env.sh配置中的JDK路径
创建 job/flume-netcat-logger.conf,文件内容如下:
# example.conf: A single-node Flume configuration
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
## 事件容量
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
## channel 与 sink 的关系是 1对多 的关系。1个sink只可以绑定1个channel,1个channel可以绑定多个sink。
a1.sinks.k1.channel = c1
启动、运行
启动flume
bin/flume-ng agent --conf conf --conf-file job/flume-netcat-logger.conf --name a1 -Dflume.root.logger=INFO,console
使用natcat监听端口
nc localhost 44444
运行结果

监控Hive日志上传到HDFS
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe / configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /usr/local/logs/hive/hive.log
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://localhost:9000/flume/%Y%m%d/%H
a1.sinks.k1.hdfs.filePrefix = logs-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 1
a1.sinks.k1.hdfs.roundUnit = hour
a1.sinks.k1.hdfs.useLocalTimeStamp = true
a1.sinks.k1.hdfs.batchSize = 1000
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 30
a1.sinks.k1.hdfs.rollSize = 13417700
a1.sinks.k1.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
执行命令bin/flume-ng agent -c conf/ -f job/file-flume-logger.conf -n a1

数据通过Flume传到Kafka
使用natcat监听端口数据通过Flume传到Kafka
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe / configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = payTopic
a1.sinks.k1.kafka.bootstrap.servers = 127.0.0.1:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.k1.kafka.producer.compression.type = snappy
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
运行结果


参考文档
Flume官网
Flume 官网开发者文档
Flume 官网使用者文档
尚硅谷大数据课程之Flume
FlumeUserGuide
Flume(一) —— 启动与基本使用的更多相关文章
- flume【源码分析】分析Flume的启动过程
h2 { color: #fff; background-color: #7CCD7C; padding: 3px; margin: 10px 0px } h3 { color: #fff; back ...
- Flume定时启动任务 防止挂掉
一,查看Flume条数:ps -ef|grep java|grep flume|wc -l ==>15 检查进程:给sh脚本添加权限,chmod 777 xx.sh #!/bin/s ...
- flume采集启动报错,权限不够
18/04/18 16:47:12 WARN source.EventReader: Could not find file: /home/hadoop/king/flume/103104/data/ ...
- [转] flume使用(六):后台启动及日志查看
[From] https://blog.csdn.net/maoyuanming0806/article/details/80807087 处理的问题flume 普通方式启动会有自己自动停掉的问题,这 ...
- Flume(3)source组件之NetcatSource使用介绍
一.概述: 本节首先提供一个基于netcat的source+channel(memory)+sink(logger)的数据传输过程.然后剖析一下NetcatSource中的代码执行逻辑. 二.flum ...
- 大数据系统之监控系统(二)Flume的扩展
一些需求是原生Flume无法满足的,因此,基于开源的Flume我们增加了许多功能. EventDeserializer的缺陷 Flume的每一个source对应的deserializer必须实现接口E ...
- flume+kafka+hbase+ELK
一.架构方案如下图: 二.各个组件的安装方案如下: 1).zookeeper+kafka http://www.cnblogs.com/super-d2/p/4534323.html 2)hbase ...
- Flume日志采集系统——初体验(Logstash对比版)
这两天看了一下Flume的开发文档,并且体验了下Flume的使用. 本文就从如下的几个方面讲述下我的使用心得: 初体验--与Logstash的对比 安装部署 启动教程 参数与实例分析 Flume初体验 ...
- 【转】Flume日志收集
from:http://www.cnblogs.com/oubo/archive/2012/05/25/2517751.html Flume日志收集 一.Flume介绍 Flume是一个分布式.可 ...
- CentOS 7部署flume
CentOS 7部署flume 准备工作: 安装java并设置java环境变量,在`/etc/profile`中加入 export JAVA_HOME=/usr/java/jdk1.8.0_65 ex ...
随机推荐
- ajax的五大步骤
什么是Ajax? AJAX 是与服务器交换数据并更新部分网页的艺术,在不重新加载整个页面的情况下. var btn = document.getElementsByTagName('button')[ ...
- POSIX 使用互斥量和条件变量实现生产者/消费者问题
boost的mutex,condition_variable非常好用.但是在Linux上,boost实际上做的是对pthread_mutex_t 和pthread_cond_t的一系列的封装.因此通过 ...
- nginx反向代理前后端分离项目(后端多台)
目前软件架构都比较流行前后端分离,前后端的分离也实现了前后端架构的分离,带来的好处 —— 整个项目的开发权重往前移,实现真正的前后端解耦,动态资源和静态资源分离,提高了性能和扩展性. 通常Spring ...
- select下拉框小DemoA
<html> <head> <meta charset="utf-8"> <script src="jquery-1.9.1.m ...
- kubernetes存储之GlusterFS
目录 1.glusterfs概述 1.1.glusterfs简介 1.2.glusterfs特点 1.3.glusterfs卷的模式 2.heketi概述 3.部署heketi+glusterfs 3 ...
- PAT甲级1011水题飘过
题目分析:对于输入的数据分三条,选出每条中最大值记录下来,按照题目要求算出最大可能的获利即可 #include<iostream> using namespace std; ]; //k数 ...
- Qualification Rounds(Codeforces Round #438 by Sberbank and Barcelona Bootcamp (Div. 1 + Div. 2 combined)+状态压缩)
题目链接 传送门 题意 现总共有\(n\)个题目\(k\)支参赛队伍,已知每个题目各队伍是否会写,现问你能否从题目中选出一个子序列使得每支队伍最多只会写一半的题目. 思路 对于每个题目我们用二进制压缩 ...
- 开发环境搭建之springboot+tk.mybatis整合使用逆向工程
一,引入xml文件: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE generatorCo ...
- linux下用vim写Python自动缩进的配置
#首先用 find / -name vimrc 找到vimrc文件#一般在 /etc/vimrc#进入vimrc后加入以下命令 set number set autoindent set shiftw ...
- Laravel —— 多模块开发
Laravel 框架比较庞大,更适用于比较大的项目. 为了整个项目文件结构清晰,不同部分分为不同模块很有必要. 一.安装扩展包 1.根据不同 Laravel 版本,选择扩展包版本. packagest ...