JVM 类加载器命名空间深度解析与实例分析
一、创建Sample
1、创建实例
public class MyPerson { private MyPerson myPerson; public void setMyPerson(Object obj){
this.myPerson = (MyPerson)obj;
}
}
2、创建测试类
public class MyTest20 { public static void main(String[] args) throws Exception {
MyTest16 loader1 = new MyTest16("loader1");
MyTest16 loader2 = new MyTest16("loader2"); Class<?> clazz1 = loader1.loadClass("com.example.jvm.classloader.MyPerson"); Class<?> clazz2 = loader2.loadClass("com.example.jvm.classloader.MyPerson"); System.out.println( clazz1 == clazz2); Object object1 = clazz1.newInstance();
Object object2 = clazz2.newInstance(); Method method = clazz1.getMethod("setMyPerson", Object.class);
method.invoke(object1, object2); }
}
3、MyTest16类和之前的一致
public class MyTest16 extends ClassLoader{ private String className; //目录
private String path; private final String fileExtension = ".class"; public MyTest16(String classLoadName){
super(); //将系统类加载器当做该类加载器的父加载器
this.className = classLoadName;
} public MyTest16(ClassLoader parent, String classLoadName){
super(parent); //显示指定该类加载器的父加载器器
this.className = classLoadName;
} public void setPath(String path) {
this.path = path;
} @Override
public String toString() {
return "[" + this.className + "]";
} @Override
protected Class<?> findClass(String clasName) throws ClassNotFoundException {
System.out.println("findClass invoked:" + clasName);
System.out.println("class loader name: " + this.className);
byte[] data = this.loadClassData(clasName);
return this.defineClass(clasName,data, 0, data.length);
} private byte[] loadClassData(String className){
InputStream is = null;
byte[] data = null;
ByteArrayOutputStream baos = null; try{
className = className.replace(".","//");
//System.out.println("className:" +this.className);
is = new FileInputStream(new File(this.path + className + this.fileExtension));
baos = new ByteArrayOutputStream();
int ch = 0;
while ( -1 != (ch = is.read())){
baos.write(ch);
}
data = baos.toByteArray(); }catch (Exception ex){
ex.printStackTrace();
}finally {
try {
is.close();
baos.close();
}catch (Exception ex){
ex.printStackTrace();
}
} return data; } }
打印结果
true
二、修改Sample
在一的基础上修改代码,设置path
loader1.setPath("D:/temp/");
loader2.setPath("D:/temp/");
public class MyTest21 { public static void main(String[] args) throws Exception {
MyTest16 loader1 = new MyTest16("loader1");
MyTest16 loader2 = new MyTest16("loader2"); loader1.setPath("D:/temp/");
loader2.setPath("D:/temp/"); Class<?> clazz1 = loader1.loadClass("com.example.jvm.classloader.MyPerson"); Class<?> clazz2 = loader2.loadClass("com.example.jvm.classloader.MyPerson"); System.out.println( clazz1 == clazz2); Object object1 = clazz1.newInstance();
Object object2 = clazz2.newInstance(); Method method = clazz1.getMethod("setMyPerson", Object.class);
method.invoke(object1, object2); }
}
然后将class文件所在的build下的com文件夹拷贝到D:\temp 下,删除build下的MyPerson.class 文件
打印结果:
findClass invoked:com.example.jvm.classloader.MyPerson
class loader name: loader1
findClass invoked:com.example.jvm.classloader.MyPerson
class loader name: loader2
false
Exception in thread "main" java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at com.example.jvm.classloader.MyTest21.main(MyTest21.java:27)
Caused by: java.lang.ClassCastException: com.example.jvm.classloader.MyPerson cannot be cast to com.example.jvm.classloader.MyPerson
at com.example.jvm.classloader.MyPerson.setMyPerson(MyPerson.java:11)
... 5 more
结果分析,loader1和loader2分别加载了MyPerson,分别给MyPerson分配了内存空间,如下图:
loader1和loader2是两个不同的命名空间。
所以System.out.println( clazz1 == clazz2);的结果为false
这里可以回顾下命名空间的概念
每个类加载器都有自己的命名空间,命名空间由该加载器及所有父加载器所加载的类组成。
在同一个命名空间中,不会出现类的完整名字(包括类的包名)相同的两个类。
在不同的命名空间中,有可能会出现类的完整名字(包括类的包名)相同的两个类。
不同类加载器的命名空间关系
同一个命名空间内的类是相互可见的
子加载器的命名空间包含所有父加载器的命名空间。因此由子加载器加载的类能看见父加载器加载的类。例如系统类加载器加载的类能看见根类加载器加载的类。
由父加载器加载的类不能看见子加载器加载的类。
如果两个类加载器之间没有直接或间接的父子关系,那么他们各自加载的类相互不可见。
所以上面抛出异常的原因为:如果两个类加载器之间没有直接或间接的父子关系,那么他们各自加载的类相互不可见
三、类加载器的双亲委托模型的好处
1、可以确保Java核心库的类型安全: 所有的Java应用都至少会引用java.lang.Object类,也就是说在运行期,java.lang.Object这个类
会被加载到Java虚拟机中; 如果这个加载过程是由Java应用自己的类加载器所完成的,那么很可能就会 在JVM中存在多个版本的
java.lang.Object类,而且这些类之间还是不兼容的,相互不可见的。(正是命名空间在发挥作用 )
借助于双亲委托机制,Java核心类库中的类的加载工作都是由启动类加载器来统一完成。从而确保了Java应用所使用的都是同一个版本的
Java核心类库,他们之间是相互兼容的。
2、可以确保Java核心类库所提供的类不会被自定义的类所替代。
3、不同的类加载器可以为相同名称(binary name)的类创建额外的命名空间。相同名称的类可以并处在Java虚拟机中,只需要不同的类加载器来加载
他们即可。不同类加载器所加载的类之间是不兼容的,这就相当于在Java虚拟机内部创建一个又一个相互隔离的Java类空间。这类技术在很多框架中
都得到了应用。
JVM 类加载器命名空间深度解析与实例分析的更多相关文章
- (二十七)JVM类加载器机制与类加载过程
一.Java虚拟机启动.加载类过程分析 下面我将定义一个非常简单的java程序并运行它,来逐步分析java虚拟机启动的过程. package org.luanlouis.jvm.load; impor ...
- 深入JVM类加载器机制,值得你收藏
先来一道题,试试水平 public static void main(String[] args) { ClassLoader c1 = ClassloaderStudy.class.getClass ...
- JVM类加载器的分类
类加载器的分类 JVM支持两种类型的类加载器,分别为引导类加载器(Bootstrap ClassLoader)和自定义类加载器(User-Defined ClassLoader). 从概念上来讲,自定 ...
- JVM 类加载器深入解析以及重要特性剖析
1.类加载流程图 从磁盘加载到销毁的完整过程. 2.类加载流程图2 1.加载: 就是把二进制形式的java类型读入java虚拟机中 2.连接: 验证.准备.解析. 连接就是将已经读入到内存的类的二进制 ...
- JVM 类加载器 (二)
1.类加载器(ClassLoader)负责加载class文件,class文件在文件开头有特定的文件标识,并且ClassLoader只负责 class 文件的加载,至于class文件是否能够运行则由Ex ...
- JVM类加载器及Java类的生命周期
预定义类加载器(三种): 启动(Bootstrap)类加载器: 是用本地代码实现的类装入器,它负责将<Java_Runtime_Home>/lib下面的类库加载到内存中(比如rt.jar) ...
- 彻底搞懂JVM类加载器:基本概念
本文阅读时间大约9分钟. 写在前面 在Java面试中,在考察完项目经验.基础技术后,我会根据候选人的特点进行知识深度的考察,如果候选人简历上有写JVM(Java虚拟机)相关的东西,那么我常常会问一些J ...
- 从 1 开始学 JVM 系列 | JVM 类加载器(一)
从 1 开始学 JVM 系列 类加载器,对于很多人来说并不陌生.我自己第一次听到这个概念时觉得有点"高大上",觉得只有深入 JDK 源码才会触碰到 ClassLoader,平时都是 ...
- jvm类加载器以及双亲委派
首先来了解几个概念: 类加载: 概念:虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验--转换解析--初始化,最终形成能被java虚拟机直接使用的java类型,就是jvm的类加载机制. ...
随机推荐
- Python学习日记(二) list操作
l = ['a','b','c','d',1,2,[3,'e',4]] 1.list.append() 在list的结尾新增一个新的元素,没有返回值,但会修改原列表 l.append(5) print ...
- 【zookeeper】linux中编写脚本批量启动zookeeper
实现功能:一键启动.关闭主从端3个节点上的zookeeper,附加查看启动状态 mkdir bin --新建文件夹 cd bin 跳转到bin文件夹里 touch zookeeperstart.sh ...
- MySQL Index--CREATE INDEX在各版本的优化
FIC(Fast index creation)特性在MySQL 5.5版本中引入FIC(Fast index creation)特性,创建索引时无需再拷贝整表数据,以提升索引的创建速度. FCI 操 ...
- Android笔记(六十)Android总结:四大组件——BroadcastReceiver篇
什么是BroadcastReceiver BroadcastReceiver是Android体系的四大组件之一,本质上是一种全局的监听器,用于监听系统全局的广播消息,正式因为其本质为全局监听,因此可以 ...
- urllib模块中parse函数中的urlencode和quote_plus方法
本来只是向看一下quote_plus的作用,然后发现urlencode方法也是很方便的一个组合字符串的方法首先是介绍一下urlencode,他是将一些传入的元素使用&串联起来,效果如下: &g ...
- Linux磁盘管理——Ext2文件系统
前言 通常而言,对于一块新磁盘我们不是直接使用,而是先分区,分区完毕后格式化,格式化后OS才能使用这个文件系统.分区可能会涉及到MBR和GPT问题.至于格式化和文件系统又有什么关系? 这里的格式化指的 ...
- sqlite3入门之sqlite3_mprintf
sqlite3_mprintf sqlite3_mprintf()函数原型: char *sqlite3_mprintf(const char*,...); sqlite3_mprintf()的作用是 ...
- SpringBoot -生成Entity和Dto互转的双向枚举类 -使用注解@Mapper(componentModel = "spring")
1.导入pom文件 ,版本号自定 <!--mapStruct依赖--> <dependency> <groupId>org.mapstruct</groupI ...
- 【转】An introduction to using and visualizing channels in Go
An introduction to using and visualizing channels in Go 原文:https://www.sohamkamani.com/blog/2017/08/ ...
- test20190816 NOIP2019 模拟赛
100+100+20=220,T3吐槽:整个考室没有一个人正确地理解了题意. 树上路径(phantasm) Akari 的学校的校门前生长着一排 n 棵树,从西向东依次编号为 1 ∼ n.相邻两棵树间 ...