关于Exgcd
%%lkx
exgcd(扩展欧几里得)
可以用来判断并求解形如\(ax+by=c\)的方程,当且仅当\(gcd(a,b)|c\)时,存在整数解\(x,y\)
也就是说,\(exgcd\)可以用来求解方程\(ax+by=gcd(a,b)\),令\(a=b,b=a\%b\)则有方程\(b*x_1+(a\%b)*y_1=gcd(b,a\% b)\)
又因为\(gcd(a,b)=gcd(b,a\%b)\),且\(a\%b=a-b*\) \(\lfloor {a/b}\rfloor * y_1=gcd(a,b)\)
整理得:\(ay_1+b(x_1-\lfloor {a/b}\rfloor* y_1)=gcd(a,b)\)
所以原方程中: \(ay_1+ b(x_1-\lfloor {a/b}\rfloor *y_1)=gcd(a,b)\)
所以我们只需递归求\(x_1,y_1\),就能求出\(x,y\)
Code:
void exgcd(int a, int b, int &x, int &y) {
if(!b) {x = 1, y = 0;return;}
int d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
#include <cstdio>
#include <iostream>
using namespace std;
int a, b, x, y;
int read() {
int s = 0, w = 1;
char ch = getchar();
while(!isdigit(ch)) {if(ch == '-') w = -1; ch = getchar();}
while(isdigit(ch)) {s = s * 10 + ch - '0'; ch = getchar();}
return s * w;
}
void exgcd(int a, int b, int &x, int &y) {
if(!b) x = 1, y = 0;
else exgcd(b, a % b, y, x), y -= a / b * x;
}
int main() {
a = read(), b = read();
exgcd(a, b, x, y);
cout << (x + b) % b << endl;
return 0;
}
谢谢收看, 祝身体健康!
关于Exgcd的更多相关文章
- 扩展欧几里得 exGCD
Elementary Number Theory - Extended Euclid Algorithm Time Limit : 1 sec, Memory Limit : 65536 KB Jap ...
- NOIP2012同余方程[exgcd]
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整 ...
- exgcd,求乘法逆元
procedure exgcd(a,b:int64); var t:longint; begin then begin x:=;y:=; exit; end else exgcd(b,a mod b) ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- poj1061 Exgcd
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> usin ...
- 51Nod 1256 乘法逆元 Label:exgcd
1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K ...
- 【BZOJ2242】【SDoi2011】计算器 快速幂+EXGCD+BSGS
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
- Poj 2115 C Looooops(exgcd变式)
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22704 Accepted: 6251 Descripti ...
- 【BZOJ 1319】 Sgu261Discrete Rootsv (原根+BSGS+EXGCD)
1319: Sgu261Discrete Roots Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 389 Solved: 172 Descriptio ...
随机推荐
- C++:const
const const是C++提供的一个强大的关键字,const的用法非常多,但总的来说,const的作用只有一个:保证被修饰的内容不会被程序所修改. const基本用法 对一个类型的对象使用cons ...
- Balking模式
Balking模式讲的是如果现在不合适执行这个操作,或者没必要执行这个操作,就停止处理,直接返回 自动保存功能的实现逻辑一般都是隔一定时间自动执行存盘操作,存盘操作的前提是文件做过修改,如果文件没有执 ...
- nodejs anywhere 搭建本地静态文件服务
一.背景 工作中有时候往往会遇到下述场景:例如需要将新打好的安装包等文件临时性的给到同事,可能还需要给到多个同事.这时,我们往往有如下几种方案: 1,一般都会有公司内部的文件系统,上传文件后将对应的地 ...
- java线程锁基础
定义运行方法 package com.company; // 包名import java.util.concurrent.locks.ReentrantLock;import java.util.co ...
- wordcount实例
scala的wordcount实例 package com.wondersgroup.myscala import scala.actors.{Actor, Future} import scala. ...
- 【转】用VMware 8安装Ubuntu 12.04详细过程(图解)
图解演示环境版本: 本机系统: WIN7 虚拟机:VMware Workstation 8 (英文版) 安装目标:Ubuntu Desktop 12.04 LTS (请点击这里)先下载好iso镜像文 ...
- R数据挖掘 第三篇:聚类的评估(簇数确定和轮廓系数)和可视化
在实际的聚类应用中,通常使用k-均值和k-中心化算法来进行聚类分析,这两种算法都需要输入簇数,为了保证聚类的质量,应该首先确定最佳的簇数,并使用轮廓系数来评估聚类的结果. 一,k-均值法确定最佳的簇数 ...
- 我是如何一步步编码完成万仓网ERP系统的(七)产品库设计 3.品牌图片跨域上传
https://www.cnblogs.com/smh188/p/11533668.html(我是如何一步步编码完成万仓网ERP系统的(一)系统架构) https://www.cnblogs.com/ ...
- input或者el-cascader的输入框随输入内容宽度自适应
解决的思路是动态修改css的width 参考:https://blog.csdn.net/lianzhang861/article/details/84306139中的方法一, 如果是input,用o ...
- QQ互联,填写回调时注意事项
今天在做QQ登录接口的时候,填写回调地址的时候,竟然出现了诡异的事情. 我的回调地址我直接填的域名,也申请通过了.但是在做开发地时候,一直提示这蛋疼的 redirect uri is illegal ...