Data-Structure-Notes
Data Structure Notes
Chapter-1 Sorting Algorithm
- **Selection Sorting: **
/*
* Selection Sort
*/
template<typename T>
void selectionSort(T arr[], int n) {
for (int i = 0;i < n;i++) {
int minIndex = i;
for (int j = i + 1;j < n;j++) {
if (arr[j] < arr[minIndex])
minIndex = j;
}
swap(arr[i], arr[minIndex]);
}
}
// From both ends to exchange the elements in original array, it's a better solution optimize the previous Selection Sort.
template<typename T>
void OptimizedselectionSort(T arr[], int n) {
int left = 0, right = n - 1;
while (left < right) {
int minIndex = left;
int maxIndex = right;
// In each rounds must assure arr[minIndex] <= arr[maxIndex]
if (arr[minIndex] > arr[maxIndex])
swap(arr[minIndex], arr[maxIndex]);
//Traversing the array to choose the match positon.
for (int i = left + 1; i < right; i++)
if (arr[i] < arr[minIndex])
minIndex = i;
else if (arr[i] > arr[maxIndex])
maxIndex = i;
swap(arr[left], arr[minIndex]);
swap(arr[right], arr[maxIndex]);
left++;
right--;
}
return;
}
- **Bubble Sorting: **
/*
* BubbleSort
*/
template<typename T>
void BubbleSort(T arr[], int n) {
bool swapped;
do {
swapped = false;
for (int i = 1; i < n; i++)
if (arr[i - 1] > arr[i]) {
swap(arr[i - 1], arr[i]);
swapped = true;
}
// 优化, 每一趟Bubble Sort都将最大的元素放在了最后的位置
// 所以下一次排序, 最后的元素可以不再考虑
n--;
} while (swapped);
}
// 我们的第二版bubbleSort,使用newn进行优化
template<typename T>
void OptimizedBubbleSort(T arr[], int n) {
int newn; // 使用newn进行优化
do {
newn = 0;
for (int i = 1; i < n; i++)
if (arr[i - 1] > arr[i]) {
swap(arr[i - 1], arr[i]);
// 记录最后一次的交换位置,在此之后的元素在下一轮扫描中均不考虑
newn = i;
}
n = newn;
} while (newn > 0);
}
- **Shell Sorting: **
template<typename T>
void shellSort(T arr[], int n) {
// 计算 increment sequence: 1, 4, 13, 40, 121, 364, 1093...
int h = 1;
while (h < n / 3)
h = 3 * h + 1;
while (h >= 1) {
// h-sort the array
for (int i = h; i < n; i++) {
// 对 arr[i], arr[i-h], arr[i-2*h], arr[i-3*h]... 使用插入排序
T e = arr[i];
int j;
for (j = i; j >= h && e < arr[j - h]; j -= h)
arr[j] = arr[j - h];
arr[j] = e;
}
h /= 3;
}
}
- **Insert Sorting: **对于近乎有序的数组可以降到$ O(n)$的时间复杂度。
template<typename T>
void BinaryInsertionSort(T arr[], int n) {
int i, j, low, high, mid;
for (i = 1;i < n;i++) {
T e = arr[i];
//Binary Searching in the ordered range of array.
low = 0; high = i - 1;
while (low<= high)
{
mid = (low + high) / 2;
if (arr[mid] > e) high = mid - 1;
else low = mid + 1;
}
//Moving elements.
for (j = i - 1;j >= high + 1;--j) {
arr[j + 1] = arr[j];
}
arr[high + 1] = e;
}
}
template<typename T>
void OptimizedInsertionSort(T arr[], int n) {
for (int i = 1;i < n;i++) {
// Find right position without exchange frequently.
T e = arr[i];
int j;
for (j = i;j > 0 && arr[j - 1] > e;j--) {
arr[j] = arr[j - 1];
}
arr[j] = e;
}
}
**Merge Sorting: **
- Tips1:Merge Sort Optimize in nearly ordered array
void __mergeSort(T arr[], int l, int r) {
if (l >= r) return; int mid = (l + r) / 2; // variable 'mid' may overflow
__mergeSort(arr, l, mid);
__mergeSort(arr, mid+1, r);
if(arr[mid] > arr[mid+1]) // optimize in nearly ordered array.
__merge(arr, l, mid, r);
}
- Tips2:When the sorting range of array in a short length, using InsertSort replace MergeSort can be more faster.
template<typename T>
void __mergeSort(T arr[], int l, int r) {
//if (l >= r) return;
if (r - l <= 15) { // The '15' is a constant represent the minmum judge range.
InsertionSort(arr, l, r);
return;
}
int mid = (l + r) / 2; // variable 'mid' may overflow
__mergeSort(arr, l, mid);
__mergeSort(arr, mid+1, r);
if(arr[mid] > arr[mid+1]) // optimize in nearly ordered array.
__merge(arr, l, mid, r);
}
Botton to Up Merge Sorting : The algorithm can be usd in the LinkedList . The original MergeSort may preform better than this algorithm in normal situation.
- Standard
template<typename T>
void mergeSortBottonToUp(T arr[], int n) {
for(int size = 1; size <= n; size += size)
// In order to assure exist two sperate array, setting (i+size < n) not (i < n)
for (int i = 0; i + size < n ; i += size + size) {
// merge arr[i ... i+size-1] and arr[i+size ... i+2*size-1]
// In order to assure latter array isn't overflow so use min(i + size + size - 1, n-1) to choosing a right part.
__merge(arr, i, i + size - 1, min(i + size + size - 1, n-1));
}
}
- Optimization
template <typename T>
void mergeSortBU2(T arr[], int n){ // 对于小规模数组, 使用插入排序
for( int i = 0 ; i < n ; i += 16 )
insertionSort(arr,i,min(i+15,n-1)); // 一次性申请aux空间, 并将这个辅助空间以参数形式传递给完成归并排序的各个子函数
T* aux = new T[n];
for( int sz = 16; sz <= n ; sz += sz )
for( int i = 0 ; i < n - sz ; i += sz+sz )
// 对于arr[mid] <= arr[mid+1]的情况,不进行merge
// 对于近乎有序的数组非常有效,但是对于一般情况,有一定的性能损失
if( arr[i+sz-1] > arr[i+sz] )
__merge2(arr, aux, i, i+sz-1, min(i+sz+sz-1,n-1) );
delete[] aux; // 使用C++, new出来的空间不要忘记释放掉:)
}QuickSort (Divide-and-Conquer Algorithm)
Partition
Insert Sort Optimization
// sort the range of [l ... r]
template <typename T>
void __quickSort(T arr[], int l, int r) {
//if (l >= r) return;
if (r - l <= 15) {
OptimizedInsertionSort(arr, l, r);
return;
}
int p = __partition(arr, l, r);
__quickSort(arr, l, p - 1);
__quickSort(arr, p + 1, r);
}
Optimization in the face of nearly ordered array
Compare to MergeSort, the Sorting Tree generate by Quick Sort is more unbalanced.The worst situation the effience of quick sort can be deteriorate to $O(n^2)$
Tradinational Method using the left element to be demarcating element. In order to solving the problem, we select the demarcating element randomly.
template
int __partition(T arr[], int l, int r) {swap(arr[l], arr[rand() % (r - l + 1) + l]); // Add this process to randomly choose demarcating element.
T v = arr[l]; //arr[l+i ... j] < v;arr[j+1 ... i] > v
int j = l;
for (int i = l + 1;i <= r;i++) {
if (arr[i] < v) {
swap(arr[j + 1], arr[i]);
j++;
}
} swap(arr[l], arr[j]);
return j;
}
template
void quickSort(T arr[], int n) {
srand(time(NULL)); // The partial of randomly select.
__quickSort(arr, 0, n - 1);
}
- **Optimization in the face of many repeating Numbers. (*Dual Qucik Sort*)**
When face many repeating numbers, the speration of array may unbalanced. In this situation, Quick Sort can be degraded to $O(n^2)$. **Solution :** ```cpp template <typename T>
int __partition2(T arr[], int l, int r) {
swap(arr[l], arr[rand() % (r - l + 1) + l]); // Add this process to randomly choose demarcating element.
T v = arr[l]; //arr[l+i ... j] < v; arr[j+1 ... i] > v
int i = l + 1, j = r;
while (true) {
//From front to behind to find a even bigger number.
//From behind to front to find a even smaller number.
while (i <= r&& arr[i] < v) i++;
while (j >= l + 1 && arr[j] > v) j--;
if (i > j) break;
swap(arr[i], arr[j]);
i++;
j--;
} swap(arr[l], arr[j]); return j;
}- Optimization in the face of many repeating Numbers. (Qucik Sort 3 Ways)
template <typename T>
void __quickSort3(T arr[], int l, int r) {
//if (l >= r) return;
if (r - l <= 15) {
OptimizedInsertionSort(arr, l, r);
return;
} // partition
swap(arr[l], arr[rand() % (r - l + 1) + l]);
T v = arr[l]; int lt = l; //arr[l+1 ... lt] < v
int gt = r + 1; //arr[gt ... r] > v
int i = l + 1; //arr[lt+1 ... i] == v
while (i < gt) {
if (arr[i] < v) {
swap(arr[i], arr[lt + 1]);
lt++;
i++;
}
else if(arr[i] > v) {
swap(arr[i], arr[gt - 1]);
gt--;
}
else {// arr[i] == v
i++;
}
} swap(arr[l], arr[lt]); __quickSort3(arr, l, lt - 1);
__quickSort3(arr, gt, r);
} template <typename T>
void quickSort(T arr[], int n) {
srand(time(NULL)); // The partial of randomly select.
__quickSort3(arr, 0, n - 1);
}
Data-Structure-Notes的更多相关文章
- [LeetCode] All O`one Data Structure 全O(1)的数据结构
Implement a data structure supporting the following operations: Inc(Key) - Inserts a new key with va ...
- [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计
Design a data structure that supports the following two operations: void addWord(word) bool search(w ...
- [LeetCode] Two Sum III - Data structure design 两数之和之三 - 数据结构设计
Design and implement a TwoSum class. It should support the following operations:add and find. add - ...
- Finger Trees: A Simple General-purpose Data Structure
http://staff.city.ac.uk/~ross/papers/FingerTree.html Summary We present 2-3 finger trees, a function ...
- Mesh Data Structure in OpenCascade
Mesh Data Structure in OpenCascade eryar@163.com 摘要Abstract:本文对网格数据结构作简要介绍,并结合使用OpenCascade中的数据结构,将网 ...
- ✡ leetcode 170. Two Sum III - Data structure design 设计two sum模式 --------- java
Design and implement a TwoSum class. It should support the following operations: add and find. add - ...
- leetcode Add and Search Word - Data structure design
我要在这里装个逼啦 class WordDictionary(object): def __init__(self): """ initialize your data ...
- Java for LeetCode 211 Add and Search Word - Data structure design
Design a data structure that supports the following two operations: void addWord(word)bool search(wo ...
- HDU5739 Fantasia(点双连通分量 + Block Forest Data Structure)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5739 Description Professor Zhang has an undirect ...
- LeetCode Two Sum III - Data structure design
原题链接在这里:https://leetcode.com/problems/two-sum-iii-data-structure-design/ 题目: Design and implement a ...
随机推荐
- (尚030)Vue_案例_存储数据(localStorage本地存储技术)
当刷新页面时,会变为原来的状态 1.问题:当我刷新是不希望改变原来状态 需要缓存我当前的数据 2.究竟是缓存在内存里还是在文件里??? 缓存在文件里,因为浏览器关闭了,内存就没了;而我们需要重新打开浏 ...
- sqlg rdbms 上实现的Apache TinkerPop
sqlg 可以让关系型数据库支持Apache TinkerPop,当前支持的数据库有postgresql,hsqldb,h2,mariadb,mysql,mssqlserver 以下是一个简单的使用 ...
- shell 查找字符串中字符出现的位置
#!/bin/bash a="The cat sat on the mat" test="cat" awk -v a="$a" -v b=& ...
- [转]【kafka】用 Docker 部署 Kafka
ref : https://www.jianshu.com/p/7635ea96e53f 用 Docker 部署 Kafka Kafka 简介 作为一个消息中间件,Kafka 以高扩展性.高吞吐量 ...
- java并发编程(二)synchronized
参考文章: http://blog.csdn.net/javazejian/article/details/72828483http://ifeve.com/java-synchronized/htt ...
- 解决vue视图不渲染
动态添加对象属性 //声明var travelMainVueObj;travelMainVueObj = new Vue({ "el" : "#portletConten ...
- dubbo源码分析之基于SPI的强大扩展
https://blog.csdn.net/luoyang_java/article/details/86609045 Dubbo采用微内核+插件体系,使得设计优雅,扩展性强.那所谓的微内核+插件体系 ...
- maven本地仓库已经有了所需的jar包,为什么还要去请求远程仓库
问题 IDEA 中的maven 项目,一个jar包一直导入不进来,reimport 无效.从另一仓库把这个jar包拷贝到当前仓库,还是无效.mvn clean install -e U 发现加载这个j ...
- 通过 UNSAFE 来实现一个 Atomic 的 CAS 辅助类【原创】
public abstract class AbstractUnSafeCas<T> { @SuppressWarnings("unused") private vol ...
- C++中rapidxml用法
转载:https://www.cnblogs.com/rainbow70626/p/7586713.html 解析xml是第三方库很多,例如:tingxml,这次学习一下rapidxml,rapidx ...