Data Structure Notes

Chapter-1 Sorting Algorithm

  • **Selection Sorting: **
/*
* Selection Sort
*/
template<typename T>
void selectionSort(T arr[], int n) {
for (int i = 0;i < n;i++) {
int minIndex = i;
for (int j = i + 1;j < n;j++) {
if (arr[j] < arr[minIndex])
minIndex = j;
}
swap(arr[i], arr[minIndex]);
}
} // From both ends to exchange the elements in original array, it's a better solution optimize the previous Selection Sort.
template<typename T>
void OptimizedselectionSort(T arr[], int n) { int left = 0, right = n - 1;
while (left < right) {
int minIndex = left;
int maxIndex = right; // In each rounds must assure arr[minIndex] <= arr[maxIndex]
if (arr[minIndex] > arr[maxIndex])
swap(arr[minIndex], arr[maxIndex]); //Traversing the array to choose the match positon.
for (int i = left + 1; i < right; i++)
if (arr[i] < arr[minIndex])
minIndex = i;
else if (arr[i] > arr[maxIndex])
maxIndex = i; swap(arr[left], arr[minIndex]);
swap(arr[right], arr[maxIndex]); left++;
right--;
} return;
}
  • **Bubble Sorting: **
/*
* BubbleSort
*/
template<typename T>
void BubbleSort(T arr[], int n) { bool swapped; do {
swapped = false;
for (int i = 1; i < n; i++)
if (arr[i - 1] > arr[i]) {
swap(arr[i - 1], arr[i]);
swapped = true; } // 优化, 每一趟Bubble Sort都将最大的元素放在了最后的位置
// 所以下一次排序, 最后的元素可以不再考虑
n--; } while (swapped);
} // 我们的第二版bubbleSort,使用newn进行优化
template<typename T>
void OptimizedBubbleSort(T arr[], int n) { int newn; // 使用newn进行优化 do {
newn = 0;
for (int i = 1; i < n; i++)
if (arr[i - 1] > arr[i]) {
swap(arr[i - 1], arr[i]); // 记录最后一次的交换位置,在此之后的元素在下一轮扫描中均不考虑
newn = i;
}
n = newn;
} while (newn > 0);
}
  • **Shell Sorting: **
template<typename T>
void shellSort(T arr[], int n) { // 计算 increment sequence: 1, 4, 13, 40, 121, 364, 1093...
int h = 1;
while (h < n / 3)
h = 3 * h + 1; while (h >= 1) { // h-sort the array
for (int i = h; i < n; i++) { // 对 arr[i], arr[i-h], arr[i-2*h], arr[i-3*h]... 使用插入排序
T e = arr[i];
int j;
for (j = i; j >= h && e < arr[j - h]; j -= h)
arr[j] = arr[j - h];
arr[j] = e;
} h /= 3;
}
}
  • **Insert Sorting: **对于近乎有序的数组可以降到$ O(n)$的时间复杂度。
template<typename T>
void BinaryInsertionSort(T arr[], int n) {
int i, j, low, high, mid;
for (i = 1;i < n;i++) {
T e = arr[i]; //Binary Searching in the ordered range of array.
low = 0; high = i - 1;
while (low<= high)
{
mid = (low + high) / 2;
if (arr[mid] > e) high = mid - 1;
else low = mid + 1;
}
//Moving elements.
for (j = i - 1;j >= high + 1;--j) {
arr[j + 1] = arr[j];
}
arr[high + 1] = e;
}
} template<typename T>
void OptimizedInsertionSort(T arr[], int n) {
for (int i = 1;i < n;i++) { // Find right position without exchange frequently.
T e = arr[i];
int j;
for (j = i;j > 0 && arr[j - 1] > e;j--) {
arr[j] = arr[j - 1];
}
arr[j] = e;
}
}
  • **Merge Sorting: **

    • Tips1:Merge Sort Optimize in nearly ordered array
    void __mergeSort(T arr[], int l, int r) {
    if (l >= r) return; int mid = (l + r) / 2; // variable 'mid' may overflow
    __mergeSort(arr, l, mid);
    __mergeSort(arr, mid+1, r);
    if(arr[mid] > arr[mid+1]) // optimize in nearly ordered array.
    __merge(arr, l, mid, r);
    }
    • Tips2:When the sorting range of array in a short length, using InsertSort replace MergeSort can be more faster.
     template<typename T>
    void __mergeSort(T arr[], int l, int r) {
    //if (l >= r) return;
    if (r - l <= 15) { // The '15' is a constant represent the minmum judge range.
    InsertionSort(arr, l, r);
    return;
    }
    int mid = (l + r) / 2; // variable 'mid' may overflow
    __mergeSort(arr, l, mid);
    __mergeSort(arr, mid+1, r);
    if(arr[mid] > arr[mid+1]) // optimize in nearly ordered array.
    __merge(arr, l, mid, r);
    }
  • Botton to Up Merge Sorting : The algorithm can be usd in the LinkedList . The original MergeSort may preform better than this algorithm in normal situation.

    • Standard
    template<typename T>
    void mergeSortBottonToUp(T arr[], int n) {
    for(int size = 1; size <= n; size += size)
    // In order to assure exist two sperate array, setting (i+size < n) not (i < n)
    for (int i = 0; i + size < n ; i += size + size) {
    // merge arr[i ... i+size-1] and arr[i+size ... i+2*size-1]
    // In order to assure latter array isn't overflow so use min(i + size + size - 1, n-1) to choosing a right part.
    __merge(arr, i, i + size - 1, min(i + size + size - 1, n-1));
    }
    }
    • Optimization
    template <typename T>
    void mergeSortBU2(T arr[], int n){ // 对于小规模数组, 使用插入排序
    for( int i = 0 ; i < n ; i += 16 )
    insertionSort(arr,i,min(i+15,n-1)); // 一次性申请aux空间, 并将这个辅助空间以参数形式传递给完成归并排序的各个子函数
    T* aux = new T[n];
    for( int sz = 16; sz <= n ; sz += sz )
    for( int i = 0 ; i < n - sz ; i += sz+sz )
    // 对于arr[mid] <= arr[mid+1]的情况,不进行merge
    // 对于近乎有序的数组非常有效,但是对于一般情况,有一定的性能损失
    if( arr[i+sz-1] > arr[i+sz] )
    __merge2(arr, aux, i, i+sz-1, min(i+sz+sz-1,n-1) );
    delete[] aux; // 使用C++, new出来的空间不要忘记释放掉:)
    }
  • QuickSort (Divide-and-Conquer Algorithm)

    • Partition

    • Insert Sort Optimization

    	// sort the range of [l ... r]
    template <typename T>
    void __quickSort(T arr[], int l, int r) {
    //if (l >= r) return;
    if (r - l <= 15) {
    OptimizedInsertionSort(arr, l, r);
    return;
    }
    int p = __partition(arr, l, r);
    __quickSort(arr, l, p - 1);
    __quickSort(arr, p + 1, r);
    }
    • Optimization in the face of nearly ordered array

      Compare to MergeSort, the Sorting Tree generate by Quick Sort is more unbalanced.The worst situation the effience of quick sort can be deteriorate to $O(n^2)$

      Tradinational Method using the left element to be demarcating element. In order to solving the problem, we select the demarcating element randomly.


    template

    int __partition(T arr[], int l, int r) {

      swap(arr[l], arr[rand() % (r - l + 1) + l]);  // Add this process to randomly choose demarcating element.
    T v = arr[l]; //arr[l+i ... j] < v;arr[j+1 ... i] > v
    int j = l;
    for (int i = l + 1;i <= r;i++) {
    if (arr[i] < v) {
    swap(arr[j + 1], arr[i]);
    j++;
    }
    } swap(arr[l], arr[j]);
    return j;

    }

    template

    void quickSort(T arr[], int n) {

    srand(time(NULL)); // The partial of randomly select.

    __quickSort(arr, 0, n - 1);

    }


    - **Optimization in the face of many repeating Numbers. (*Dual Qucik Sort*)**
    When face many repeating numbers, the speration of array may unbalanced. In this situation, Quick Sort can be degraded to $O(n^2)$. **Solution :** ```cpp template <typename T>
    int __partition2(T arr[], int l, int r) {
    swap(arr[l], arr[rand() % (r - l + 1) + l]); // Add this process to randomly choose demarcating element.
    T v = arr[l]; //arr[l+i ... j] < v; arr[j+1 ... i] > v
    int i = l + 1, j = r;
    while (true) {
    //From front to behind to find a even bigger number.
    //From behind to front to find a even smaller number.
    while (i <= r&& arr[i] < v) i++;
    while (j >= l + 1 && arr[j] > v) j--;
    if (i > j) break;
    swap(arr[i], arr[j]);
    i++;
    j--;
    } swap(arr[l], arr[j]); return j;
    }
    • Optimization in the face of many repeating Numbers. (Qucik Sort 3 Ways)
    template <typename T>
    void __quickSort3(T arr[], int l, int r) {
    //if (l >= r) return;
    if (r - l <= 15) {
    OptimizedInsertionSort(arr, l, r);
    return;
    } // partition
    swap(arr[l], arr[rand() % (r - l + 1) + l]);
    T v = arr[l]; int lt = l; //arr[l+1 ... lt] < v
    int gt = r + 1; //arr[gt ... r] > v
    int i = l + 1; //arr[lt+1 ... i] == v
    while (i < gt) {
    if (arr[i] < v) {
    swap(arr[i], arr[lt + 1]);
    lt++;
    i++;
    }
    else if(arr[i] > v) {
    swap(arr[i], arr[gt - 1]);
    gt--;
    }
    else {// arr[i] == v
    i++;
    }
    } swap(arr[l], arr[lt]); __quickSort3(arr, l, lt - 1);
    __quickSort3(arr, gt, r);
    } template <typename T>
    void quickSort(T arr[], int n) {
    srand(time(NULL)); // The partial of randomly select.
    __quickSort3(arr, 0, n - 1);
    }

Data-Structure-Notes的更多相关文章

  1. [LeetCode] All O`one Data Structure 全O(1)的数据结构

    Implement a data structure supporting the following operations: Inc(Key) - Inserts a new key with va ...

  2. [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计

    Design a data structure that supports the following two operations: void addWord(word) bool search(w ...

  3. [LeetCode] Two Sum III - Data structure design 两数之和之三 - 数据结构设计

    Design and implement a TwoSum class. It should support the following operations:add and find. add - ...

  4. Finger Trees: A Simple General-purpose Data Structure

    http://staff.city.ac.uk/~ross/papers/FingerTree.html Summary We present 2-3 finger trees, a function ...

  5. Mesh Data Structure in OpenCascade

    Mesh Data Structure in OpenCascade eryar@163.com 摘要Abstract:本文对网格数据结构作简要介绍,并结合使用OpenCascade中的数据结构,将网 ...

  6. ✡ leetcode 170. Two Sum III - Data structure design 设计two sum模式 --------- java

    Design and implement a TwoSum class. It should support the following operations: add and find. add - ...

  7. leetcode Add and Search Word - Data structure design

    我要在这里装个逼啦 class WordDictionary(object): def __init__(self): """ initialize your data ...

  8. Java for LeetCode 211 Add and Search Word - Data structure design

    Design a data structure that supports the following two operations: void addWord(word)bool search(wo ...

  9. HDU5739 Fantasia(点双连通分量 + Block Forest Data Structure)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5739 Description Professor Zhang has an undirect ...

  10. LeetCode Two Sum III - Data structure design

    原题链接在这里:https://leetcode.com/problems/two-sum-iii-data-structure-design/ 题目: Design and implement a ...

随机推荐

  1. kuma 学习三 组件说明

    当前官方已经提供了两种可选的运行模式 通用模式 kubernetes 模式 kuma 组件说明 kuma-cp kuma 的控制面板 kuma-dp kuma 的数据面板 enovy 提供sideca ...

  2. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  3. 计蒜客 41387.XKC's basketball team-线段树(区间查找大于等于x的最靠右的位置) (The Preliminary Contest for ICPC Asia Xuzhou 2019 E.) 2019年徐州网络赛

    XKC's basketball team XKC , the captain of the basketball team , is directing a train of nn team mem ...

  4. 实现mysql的读写分离(mysql-proxy)____2

    mysql-proxy简介 MySQL读写分离是指让master处理写操作,让slave处理读操作,非常适用于读操作量比较大的场景,可减轻master的压力. 使用mysql-proxy实现mysql ...

  5. NSGA-II算法学习

    什么是支配: 支配就是统治,在各方面都优于其余个体 如个体i支配个体j,就说明个体i在所有目标函数的表现上都不差于个体j,并且至少在一个目标上优于个体j: 什么是非支配: 非支配就是个体在种群中是最优 ...

  6. Excel填坑[0]

    Excel填坑[0] 本着一天水一贴的原则(放p),我又来填坑了.今天做一个很简单的排队图,虽然不难,但因为手机显示问题折腾了半天.感觉做图做表格不仅仅是靠技术,更重要的是思维. 就是这张图,看起来平 ...

  7. 冰多多团队alpha阶段发布说明

    标题:冰多多Alpha阶段发布说明 Alpha版本功能介绍 我们项目当前是两个部分,前端编辑器和后端mtermux是分开的,是两个独立的app项目,还没有完美的连起来(我们alpha阶段目标任务是不必 ...

  8. Xshell 服务器配置

    1.新建链接  2.配置公网IP  3.输入用户名和密码

  9. unix udp sendto 最大可发送的数据长度

    sendto 的最大可发送数据长度受限于两个值. 第一 [2^16 -1 - 8 -20] 第二 [SO_SNDBUF] 解释受限于[2^16-1-8-20] 数据封装过程 第一步: 用户层 : us ...

  10. Android相关视频

    Android架构师 层次分析 –从顶层到底层 洞察其原理https://www.bilibili.com/video/av59066641?t=132安卓/Android 逆向破解系统班 第2期 全 ...