Data-Structure-Notes
Data Structure Notes
Chapter-1 Sorting Algorithm
- **Selection Sorting: **
/*
* Selection Sort
*/
template<typename T>
void selectionSort(T arr[], int n) {
for (int i = 0;i < n;i++) {
int minIndex = i;
for (int j = i + 1;j < n;j++) {
if (arr[j] < arr[minIndex])
minIndex = j;
}
swap(arr[i], arr[minIndex]);
}
}
// From both ends to exchange the elements in original array, it's a better solution optimize the previous Selection Sort.
template<typename T>
void OptimizedselectionSort(T arr[], int n) {
int left = 0, right = n - 1;
while (left < right) {
int minIndex = left;
int maxIndex = right;
// In each rounds must assure arr[minIndex] <= arr[maxIndex]
if (arr[minIndex] > arr[maxIndex])
swap(arr[minIndex], arr[maxIndex]);
//Traversing the array to choose the match positon.
for (int i = left + 1; i < right; i++)
if (arr[i] < arr[minIndex])
minIndex = i;
else if (arr[i] > arr[maxIndex])
maxIndex = i;
swap(arr[left], arr[minIndex]);
swap(arr[right], arr[maxIndex]);
left++;
right--;
}
return;
}
- **Bubble Sorting: **
/*
* BubbleSort
*/
template<typename T>
void BubbleSort(T arr[], int n) {
bool swapped;
do {
swapped = false;
for (int i = 1; i < n; i++)
if (arr[i - 1] > arr[i]) {
swap(arr[i - 1], arr[i]);
swapped = true;
}
// 优化, 每一趟Bubble Sort都将最大的元素放在了最后的位置
// 所以下一次排序, 最后的元素可以不再考虑
n--;
} while (swapped);
}
// 我们的第二版bubbleSort,使用newn进行优化
template<typename T>
void OptimizedBubbleSort(T arr[], int n) {
int newn; // 使用newn进行优化
do {
newn = 0;
for (int i = 1; i < n; i++)
if (arr[i - 1] > arr[i]) {
swap(arr[i - 1], arr[i]);
// 记录最后一次的交换位置,在此之后的元素在下一轮扫描中均不考虑
newn = i;
}
n = newn;
} while (newn > 0);
}
- **Shell Sorting: **
template<typename T>
void shellSort(T arr[], int n) {
// 计算 increment sequence: 1, 4, 13, 40, 121, 364, 1093...
int h = 1;
while (h < n / 3)
h = 3 * h + 1;
while (h >= 1) {
// h-sort the array
for (int i = h; i < n; i++) {
// 对 arr[i], arr[i-h], arr[i-2*h], arr[i-3*h]... 使用插入排序
T e = arr[i];
int j;
for (j = i; j >= h && e < arr[j - h]; j -= h)
arr[j] = arr[j - h];
arr[j] = e;
}
h /= 3;
}
}
- **Insert Sorting: **对于近乎有序的数组可以降到$ O(n)$的时间复杂度。
template<typename T>
void BinaryInsertionSort(T arr[], int n) {
int i, j, low, high, mid;
for (i = 1;i < n;i++) {
T e = arr[i];
//Binary Searching in the ordered range of array.
low = 0; high = i - 1;
while (low<= high)
{
mid = (low + high) / 2;
if (arr[mid] > e) high = mid - 1;
else low = mid + 1;
}
//Moving elements.
for (j = i - 1;j >= high + 1;--j) {
arr[j + 1] = arr[j];
}
arr[high + 1] = e;
}
}
template<typename T>
void OptimizedInsertionSort(T arr[], int n) {
for (int i = 1;i < n;i++) {
// Find right position without exchange frequently.
T e = arr[i];
int j;
for (j = i;j > 0 && arr[j - 1] > e;j--) {
arr[j] = arr[j - 1];
}
arr[j] = e;
}
}
**Merge Sorting: **
- Tips1:Merge Sort Optimize in nearly ordered array
void __mergeSort(T arr[], int l, int r) {
if (l >= r) return; int mid = (l + r) / 2; // variable 'mid' may overflow
__mergeSort(arr, l, mid);
__mergeSort(arr, mid+1, r);
if(arr[mid] > arr[mid+1]) // optimize in nearly ordered array.
__merge(arr, l, mid, r);
}
- Tips2:When the sorting range of array in a short length, using InsertSort replace MergeSort can be more faster.
template<typename T>
void __mergeSort(T arr[], int l, int r) {
//if (l >= r) return;
if (r - l <= 15) { // The '15' is a constant represent the minmum judge range.
InsertionSort(arr, l, r);
return;
}
int mid = (l + r) / 2; // variable 'mid' may overflow
__mergeSort(arr, l, mid);
__mergeSort(arr, mid+1, r);
if(arr[mid] > arr[mid+1]) // optimize in nearly ordered array.
__merge(arr, l, mid, r);
}
Botton to Up Merge Sorting : The algorithm can be usd in the LinkedList . The original MergeSort may preform better than this algorithm in normal situation.
- Standard
template<typename T>
void mergeSortBottonToUp(T arr[], int n) {
for(int size = 1; size <= n; size += size)
// In order to assure exist two sperate array, setting (i+size < n) not (i < n)
for (int i = 0; i + size < n ; i += size + size) {
// merge arr[i ... i+size-1] and arr[i+size ... i+2*size-1]
// In order to assure latter array isn't overflow so use min(i + size + size - 1, n-1) to choosing a right part.
__merge(arr, i, i + size - 1, min(i + size + size - 1, n-1));
}
}
- Optimization
template <typename T>
void mergeSortBU2(T arr[], int n){ // 对于小规模数组, 使用插入排序
for( int i = 0 ; i < n ; i += 16 )
insertionSort(arr,i,min(i+15,n-1)); // 一次性申请aux空间, 并将这个辅助空间以参数形式传递给完成归并排序的各个子函数
T* aux = new T[n];
for( int sz = 16; sz <= n ; sz += sz )
for( int i = 0 ; i < n - sz ; i += sz+sz )
// 对于arr[mid] <= arr[mid+1]的情况,不进行merge
// 对于近乎有序的数组非常有效,但是对于一般情况,有一定的性能损失
if( arr[i+sz-1] > arr[i+sz] )
__merge2(arr, aux, i, i+sz-1, min(i+sz+sz-1,n-1) );
delete[] aux; // 使用C++, new出来的空间不要忘记释放掉:)
}QuickSort (Divide-and-Conquer Algorithm)
Partition
Insert Sort Optimization
// sort the range of [l ... r]
template <typename T>
void __quickSort(T arr[], int l, int r) {
//if (l >= r) return;
if (r - l <= 15) {
OptimizedInsertionSort(arr, l, r);
return;
}
int p = __partition(arr, l, r);
__quickSort(arr, l, p - 1);
__quickSort(arr, p + 1, r);
}
Optimization in the face of nearly ordered array
Compare to MergeSort, the Sorting Tree generate by Quick Sort is more unbalanced.The worst situation the effience of quick sort can be deteriorate to $O(n^2)$
Tradinational Method using the left element to be demarcating element. In order to solving the problem, we select the demarcating element randomly.
template
int __partition(T arr[], int l, int r) {swap(arr[l], arr[rand() % (r - l + 1) + l]); // Add this process to randomly choose demarcating element.
T v = arr[l]; //arr[l+i ... j] < v;arr[j+1 ... i] > v
int j = l;
for (int i = l + 1;i <= r;i++) {
if (arr[i] < v) {
swap(arr[j + 1], arr[i]);
j++;
}
} swap(arr[l], arr[j]);
return j;
}
template
void quickSort(T arr[], int n) {
srand(time(NULL)); // The partial of randomly select.
__quickSort(arr, 0, n - 1);
}
- **Optimization in the face of many repeating Numbers. (*Dual Qucik Sort*)**
When face many repeating numbers, the speration of array may unbalanced. In this situation, Quick Sort can be degraded to $O(n^2)$. **Solution :** ```cpp template <typename T>
int __partition2(T arr[], int l, int r) {
swap(arr[l], arr[rand() % (r - l + 1) + l]); // Add this process to randomly choose demarcating element.
T v = arr[l]; //arr[l+i ... j] < v; arr[j+1 ... i] > v
int i = l + 1, j = r;
while (true) {
//From front to behind to find a even bigger number.
//From behind to front to find a even smaller number.
while (i <= r&& arr[i] < v) i++;
while (j >= l + 1 && arr[j] > v) j--;
if (i > j) break;
swap(arr[i], arr[j]);
i++;
j--;
} swap(arr[l], arr[j]); return j;
}- Optimization in the face of many repeating Numbers. (Qucik Sort 3 Ways)
template <typename T>
void __quickSort3(T arr[], int l, int r) {
//if (l >= r) return;
if (r - l <= 15) {
OptimizedInsertionSort(arr, l, r);
return;
} // partition
swap(arr[l], arr[rand() % (r - l + 1) + l]);
T v = arr[l]; int lt = l; //arr[l+1 ... lt] < v
int gt = r + 1; //arr[gt ... r] > v
int i = l + 1; //arr[lt+1 ... i] == v
while (i < gt) {
if (arr[i] < v) {
swap(arr[i], arr[lt + 1]);
lt++;
i++;
}
else if(arr[i] > v) {
swap(arr[i], arr[gt - 1]);
gt--;
}
else {// arr[i] == v
i++;
}
} swap(arr[l], arr[lt]); __quickSort3(arr, l, lt - 1);
__quickSort3(arr, gt, r);
} template <typename T>
void quickSort(T arr[], int n) {
srand(time(NULL)); // The partial of randomly select.
__quickSort3(arr, 0, n - 1);
}
Data-Structure-Notes的更多相关文章
- [LeetCode] All O`one Data Structure 全O(1)的数据结构
Implement a data structure supporting the following operations: Inc(Key) - Inserts a new key with va ...
- [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计
Design a data structure that supports the following two operations: void addWord(word) bool search(w ...
- [LeetCode] Two Sum III - Data structure design 两数之和之三 - 数据结构设计
Design and implement a TwoSum class. It should support the following operations:add and find. add - ...
- Finger Trees: A Simple General-purpose Data Structure
http://staff.city.ac.uk/~ross/papers/FingerTree.html Summary We present 2-3 finger trees, a function ...
- Mesh Data Structure in OpenCascade
Mesh Data Structure in OpenCascade eryar@163.com 摘要Abstract:本文对网格数据结构作简要介绍,并结合使用OpenCascade中的数据结构,将网 ...
- ✡ leetcode 170. Two Sum III - Data structure design 设计two sum模式 --------- java
Design and implement a TwoSum class. It should support the following operations: add and find. add - ...
- leetcode Add and Search Word - Data structure design
我要在这里装个逼啦 class WordDictionary(object): def __init__(self): """ initialize your data ...
- Java for LeetCode 211 Add and Search Word - Data structure design
Design a data structure that supports the following two operations: void addWord(word)bool search(wo ...
- HDU5739 Fantasia(点双连通分量 + Block Forest Data Structure)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5739 Description Professor Zhang has an undirect ...
- LeetCode Two Sum III - Data structure design
原题链接在这里:https://leetcode.com/problems/two-sum-iii-data-structure-design/ 题目: Design and implement a ...
随机推荐
- Django 基础篇(二)视图与模板
视图 在django中,视图对WEB请求进行回应 视图接收reqeust对象作为第一个参数,包含了请求的信息 视图就是一个Python函数,被定义在views.py中 #coding:utf- fro ...
- 洛谷 P5269 欧稳欧再次学车 题解
P5269 欧稳欧再次学车 题目背景 请自行脑补一张欧稳欧学车的图 题目描述 欧稳欧学车时经常用一辆橡树车练习.这辆橡树车共有 \(N\) 个挡位,欧稳欧每秒可以把挡位增加或减少 \(1\),初始时( ...
- 洛谷1169 [ZJOI2007] 棋盘制作
题目链接 题意概述:给出由0 1构成的矩阵,求没有0 1 相邻的最大子矩阵的最大子正方形. 解题思路:设f[i][j]表示i j向上能到哪,l[i][j] r[i][j]表示向左/右,转移时分开计算矩 ...
- Watcher监听
可以设置观察的操作:exists,getChildren,getData 可以触发观察的操作:create,delete,setData zookeeper观察机制; 服务端只存储事件的信息,客户 ...
- WPF——OXY绘图
private PlotModel _plotModel; public PlotModel plotModel { get { return _plotModel; } set { _plotMod ...
- 冰多多团队-第九次Scrum例会
冰多多团队-第九次Scrum会议 工作情况 团队成员 已完成任务 待完成任务 zpj debug, IAT debug, IAT 牛雅哲 debug, IAT 接通新的语音识别接口和termux,完成 ...
- Declaration of Admin\Controller\GameController::delete() should be compatible with。。
NOTIC: [2048] Declaration of Admin\Controller\GameController::delete() should be compatible with A ...
- List和数组的互转
list转数组: /要转换的list集合 List<String> testList = new ArrayList<String>(){{add("aa" ...
- Gradle 教程: 教你配置全局国内仓库,解决新建项目卡顿,下载构建慢等问题
想必各位从Maven 转过来的大佬们,对于maven中配置国内仓库的方法还记忆深刻.通过/用户目录下/.m2/settings.xml 局部配置或者修改全局配置.不过没有接触过maven 也不要紧,可 ...
- MySQL 设计与开发规范
MySQL 设计与开发规范 1 目的 本规范的主要目的是希望规范数据库设计与开发,尽量避免由于数据库设计与开发不当而产生的麻烦:同时好的规范,在执行的时候可以培养出好的习惯,好的习惯是软件质量的很好保 ...