传送门

Solution

显然每个点的权值可以由当前点上下左右的树的数量用组合数\(O(1)\)求出,但这样枚举会T

那么我们考虑一段连续区间,对于一行中两个常青树中间的部分左右树的数量一定,我们可用树状数组求区上下贡献值和,相乘就得到了当前区间的贡献。

有思路调不出来系列

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define Re register
#define Ms(a,b) memset(a,(b),sizeof(a))
#define Fo(i,a,b) for(Re int i=(a),_=(b);i<=_;i++)
#define Ro(i,a,b) for(Re int i=(b),_=(a);i>=_;i--)
using namespace std;
typedef long long LL; inline int read() {
int x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int MAXW=1e5+5;
int n,m,W,lx,k,N;
int dx[MAXW],wx[MAXW],d[MAXW],l[MAXW],u[MAXW],r[MAXW];
LL ans,Cc[MAXW][13];
struct Tree{int x,y,id;}T[MAXW]; struct BIT{
LL da[MAXW];
BIT() {clear();}
void clear() {Ms(da,0);}
void add(int x,LL d) {for(;x<=lx;x+=x&-x)da[x]+=d;}
LL qry(int x) {LL t=0;for(;x;x-=x&-x)t+=da[x];return t;}
}B; bool cmpx(Tree a,Tree b) {return a.x==b.x?a.y<b.y:a.x<b.x;}
bool cmpy(Tree a,Tree b) {return a.y==b.y?a.x<b.x:a.y<b.y;} void init() {
sort(T+1,T+1+W,cmpx);
Fo(i,1,W) {
int j=i,now=0;
while(T[j+1].x==T[j].x) j++,d[T[j].id]=++now;
while(i<=j) u[T[i].id]=now--,i++; i--;
N=max(N,d[T[j].id]);
}
sort(T+1,T+1+W,cmpy);
Fo(i,1,W) {
int j=i,now=0;
while(T[j+1].y==T[j].y) j++,l[T[j].id]=++now;
while(i<=j) r[T[i].id]=now--,i++; i--;
N=max(N,l[T[j].id]);
}
Fo(i,0,N) Cc[i][0]=Cc[i][i]=1;
Fo(i,2,N) Fo(j,1,k) Cc[i][j]=Cc[i-1][j]+Cc[i-1][j-1]; sort(dx+1,dx+1+lx); lx=unique(dx+1,dx+1+lx)-dx-1;
Fo(i,1,W) wx[i]=lower_bound(dx+1,dx+1+lx,T[i].x)-dx;
} LL C(int x) {return Cc[x][k];} int main() {
n=read()+1; m=read()+1; W=read();
Fo(i,1,W) dx[++lx]=T[i].x=read()+1,T[i].y=read()+1,T[i].id=i;
k=read(); init();
for(Re int i=1,j;i<=W;i=j+1) {
j=i; B.add(wx[i],C(d[T[i].id]+1)*C(u[T[i].id])-C(d[T[i].id])*C(u[T[i].id]+1));
while(T[j+1].y==T[i].y) {
j++; ans+=C(l[T[j-1].id]+1)*C(r[T[j].id]+1)*(B.qry(wx[j]-1)-B.qry(wx[j-1]));
B.add(wx[j],C(d[T[j].id]+1)*C(u[T[j].id])-C(d[T[j].id])*C(u[T[j].id]+1));
}
}
printf("%d",ans&2147483647);//自然溢出,可以有效简化代码,但易出错,慎用
return 0;
}

[luogu2154 SDOI2009] 虔诚的墓主人(树状数组+组合数)的更多相关文章

  1. Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 895  Solved: 422[Submit][Statu ...

  2. P2154 [SDOI2009]虔诚的墓主人 树状数组

    https://www.luogu.org/problemnew/show/P2154 题意 在一个坐标系中,有w(1e5)个点,这个图中空点的权值是正上,正下,正左,正右各取k个的排列组合情况.计算 ...

  3. BZOJ-1227 虔诚的墓主人 树状数组+离散化+组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MB Submit: 914 Solved: 431 [Submit][Statu ...

  4. BZOJ1227 SDOI2009 虔诚的墓主人【树状数组+组合数】【好题】*

    BZOJ1227 SDOI2009 虔诚的墓主人 Description 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地. ...

  5. luogu2154 [SDOI2009] 虔诚的墓主人 离散化 树状数组 扫描线

    题目大意 公墓可以看成一块N×M的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地.一块墓地的虔诚度是指以这块墓地为中心的十字架的数目,一个十字架可以看成中间是墓地,墓地的正上.正 ...

  6. [BZOJ1227][SDOI2009]虔诚的墓主人 组合数+树状数组

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1433  Solved: 672[Submit][Stat ...

  7. bzoj1227: [SDOI2009]虔诚的墓主人(树状数组,组合数)

    传送门 首先,对于每一块墓地,如果上下左右各有$a,b,c,d$棵树,那么总的虔诚度就是$C_k^a*C_k^b*C_k^c*C_k^d$ 那么我们先把所有的点都给离散,然后按$x$为第一关键字,$y ...

  8. BZOJ1227 [SDOI2009]虔诚的墓主人 【树状数组】

    题目 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地.当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地.为 ...

  9. BZOJ 1227 虔诚的墓主人(离散化+树状数组)

    题目中矩形的尺寸太大,导致墓地的数目太多,如果我们统计每一个墓地的虔诚度,超时是一定的. 而常青树的数目<=1e5.这启发我们从树的方向去思考. 考虑一行没有树的情况,显然这一行的墓地的虔诚度之 ...

随机推荐

  1. oracle11g 手工建库步骤

    #create oracle instance parameter vi initkevin.or db_name='kevin' memory_target=0 sga_max_size=5G sg ...

  2. LeetCode 168. Excel Sheet Column Title (Excel 表格列名称)

    Given a positive integer, return its corresponding column title as appear in an Excel sheet. For exa ...

  3. Mysql 存储引擎中InnoDB与MyISAM差别(网络整理)

    1. 事务处理 innodb 支持事务功能,myisam 不支持. Myisam 的运行速度更快,性能更好. 2,select ,update ,insert ,delete 操作 MyISAM:假设 ...

  4. BestCoder Round #59 (div.2) B. Reorder the Books 想法题

    Reorder the Books 问题描述 dxy家收藏了一套书,这套书叫<SDOI故事集>,<SDOI故事集>有n(n\leq 19)n(n≤19)本,每本书有一个编号,从 ...

  5. FileZilla文件下载的目录

    连接上ftp服务器之后,在remote site那边邮件选中了目录下载文件,但是下载完成之后. 不知道下载到哪里了,用search everything软件搜了一下,发现就在D盘的根目录. 所以,下载 ...

  6. 自定义Git(转载)

    转自:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/00137621280731 ...

  7. [Swift通天遁地]三、手势与图表-(5)创建带有标题、图例、坐标轴的柱形图表

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  8. 推荐给Web前端开发人员的一些书籍(从基础到架构阶段)

    有很多人问我说作为一个前端开发人员都需要看一些什么书籍,尤其是刚入门的新手,今天我整理了一下推荐给大家,大佬绕过. HTML+CSS+JavaScript 网页设计 从入门到精通 作为一个前端新手,强 ...

  9. scrapy安装及基本使用

    前端html, css, js 相关知识 数据库运用 http协议的了解 前后台联动 蜘蛛中间件.下载中间件 下载中间件的地方可以写各种反爬的策略 1.使用pip安装, pip3 install sc ...

  10. DropDownList 数据源绑定和获取

    前台代码: <td>账户名称:</td> <td> <asp:DropDownList ID="DropDownListAccount" ...