Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

1.使用一个结构体存下矩阵,再写一个二维矩阵乘法函数

2.然后求[1 1 1 0]的n次方?当然不是。

注意:0 ≤ n ≤ 1,000,000,000

如果这样直接乘以n次肯定会超时

可以使用二进制求快速幂

利用二进制求指数幂

举例:

3 ^ 999 = 3 * 3 * 3 * … * 3

直接乘要做998次乘法。但事实上可以这样做,先求出2^k次幂:

3 ^ 2 = 3 * 3

3 ^ 4 = (3 ^ 2) * (3 ^ 2)

3 ^ 8 = (3 ^ 4) * (3 ^ 4)

3 ^ 16 = (3 ^ 8) * (3 ^ 8)

3 ^ 32 = (3 ^ 16) * (3 ^ 16)

3 ^ 64 = (3 ^ 32) * (3 ^ 32)

3 ^ 128 = (3 ^ 64) * (3 ^ 64)

3 ^ 256 = (3 ^ 128) * (3 ^ 128)

3 ^ 512 = (3 ^ 256) * (3 ^ 256)

再相乘:

3 ^ 999

= 3 ^ (512 + 256 + 128 + 64 + 32 + 4 + 2 + 1)

= (3 ^ 512) * (3 ^ 256) * (3 ^ 128) * (3 ^ 64) * (3 ^ 32) * (3 ^ 4) * (3 ^ 2) * 3

把999转为2进制数:1111100111,其个位就是要乘的数。

1   pow ← 1

2   while (n > 0)

3      do if (n mod 2 = 1)

4            then pow ← pow * x

5        x ← x * x

6        n ← n / 2

7      return pow

#include"iostream"
#include"cstdio"
using namespace std; typedef struct
{
int m[][];
}node; node work(node a,node b)
{
node c;
c.m[][]=(a.m[][]*b.m[][]+a.m[][]*b.m[][])%;
c.m[][]=(a.m[][]*b.m[][]+a.m[][]*b.m[][])%;
c.m[][]=(a.m[][]*b.m[][]+a.m[][]*b.m[][])%;
c.m[][]=(a.m[][]*b.m[][]+a.m[][]*b.m[][])%;
return c;
} void caculate(int c)
{
node ans,base;
base.m[][]=base.m[][]=base.m[][]=;
base.m[][]=;
ans.m[][]=ans.m[][]=;
ans.m[][]=ans.m[][]=;
while(c)
{
if(c&) ans=work(ans,base);
base=work(base,base);
c>>=;
}
cout<<ans.m[][]<<endl;
} int main()
{
int n;
while(cin>>n&&n>=)
{
caculate(n);
}
}

集训第六周 矩阵快速幂 K题的更多相关文章

  1. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

  2. hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)

    Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...

  3. POJ_Fibonacci POJ_3070(矩阵快速幂入门题,附上自己写的矩阵模板)

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10521   Accepted: 7477 Descri ...

  4. Final Destination II -- 矩阵快速幂模板题

    求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2]         f[n-1]  f[n-2]  f[n-3]         1    1    ...

  5. hdu 2604 矩阵快速幂模板题

    /* 矩阵快速幂: 第n个人如果是m,有f(n-1)种合法结果 第n个人如果是f,对于第n-1和n-2个人有四种ff,fm,mf,mm其中合法的只有fm和mm 对于ffm第n-3个人只能是m那么有f( ...

  6. HDU 1575 矩阵快速幂裸题

    题意:中文题 我就不说了吧,... 思路:矩阵快速幂 // by SiriusRen #include <cstdio> #include <cstring> using na ...

  7. POJ3070 斐波那契数列递推 矩阵快速幂模板题

    题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...

  8. POJ3070矩阵快速幂简单题

    题意:       求斐波那契后四位,n <= 1,000,000,000. 思路:        简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键 ...

  9. CodeForces 450B (矩阵快速幂模板题+负数取模)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...

随机推荐

  1. yml文件教程

    地址:http://www.ruanyifeng.com/blog/2016/07/yaml.html 原来三个横线(---)是用来区分多个文件的,像下面就是指定了两个配置. spring: appl ...

  2. c语言程序设计案例教程(第2版)笔记(四)—指针、分配存储空间、文件

    零散知识点: 指针类型:每个变量占用的首单元地址称为这个变量的存储地址. “&”为“取地址运算符”.格式:&  变量名.功能:返回指定变量的存储地址. “*”为“取内容运算”.格式:* ...

  3. linux 文件查阅 cat、more、less、tail

    文件内容查阅1.cat由第一行开始显示文件内容2.tac:从最后一行开始显示,可以看出tac是cat的倒写形式.3.nl:显示的时候,顺便输出行号;4.more:一页一页地显示文件内容5.less:与 ...

  4. (二)python高级特性

    一.切片 >>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack'] 对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python ...

  5. echart动态加载数据

    <!DOCTYPE html> <head>     <meta charset="utf-8">     <title>EChar ...

  6. form表单ajaxSubmit提交并验证

    html: <form class="register-form" action="{:U('')}" method="post"&g ...

  7. Spring注解驱动开发之AOP

    前言:现今SpringBoot.SpringCloud技术非常火热,作为Spring之上的框架,他们大量使用到了Spring的一些底层注解.原理,比如@Conditional.@Import.@Ena ...

  8. P1062 数列

    题目描述 给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是: 1,3,4,9,10,12,13,… (该序列实际上就是 ...

  9. WPF 实时绘图的逻辑

    实时绘图实际上是两个线程.外部线程直接用thread,只有到绘图那个逻辑才用绘图控件的mycanvas2.Dispatcher.Invoke. 或者说,INVOKE并不是开线程,只是一个绘图的委托而已 ...

  10. InChatter系统之客户端实现原理与阶段小结

    InChatter客户端的开发可以说是目前系统的阶段性结尾了.很抱歉的是,这篇文章来的这么晚,迟到了这么久. 在客户端的开发主要针对两个方面: 消息的传输与处理 消息的UI交互处理 一.消息的传输与处 ...