Codeforces 628D Magic Numbers
题意:
求在[a,b](a,b不含前导0)中的d−magic数中有多少个是m的倍数。
分析:
Let’s call a number d-magic if digit d appears in decimal presentation of the number on even positions and nowhere else.
仔细读题并观察例子就可以明确d−magic数从左到右所有偶数位置上都是d,奇数位上不能是d。
求[a,b],即可转化为求[1,a],[1,b]中的满足条件的数,最后相减,注意判断a是否满足条件。
设dp[i][j][k]表示前缀为i位,余数为j,等于(1)或者小于(0)上限的方案数。容易想到状态转移的过程,注意分填入的数字小于和等于上限对应元素两种情况处理。
代码:
#include<cstdio>
#include<cstring>
const int mod = 1e9+7, maxn = 2005;
int m, d;
int dp[maxn][maxn][2];
char a[maxn], b[maxn];
int num[maxn];
int solve(char* A)
{
memset(dp, 0, sizeof(dp));
memset(num, 0, sizeof(num));
int cnt = strlen(A);
for(int i = 0; i < cnt; i++){
num[i+1] = A[i] - '0';
}
for(int i = 1; i<=num[1];i++){
if(i == d)continue;
if(i < num[1]){
dp[1][i%m][0]++;
}else{
dp[1][i%m][1]++;
}
}
for(int i = 2; i <= cnt; i++){
for(int j = 0; j < m; j++){
if(i%2==0){
dp[i][(j * 10 + d)%m][0] = (dp[i][(j * 10 + d)%m][0] + dp[i - 1][j][0])%mod;
if(d < num[i])
dp[i][(j * 10 + d)%m][0] = ( dp[i][(j * 10 + d)%m][0] + dp[i - 1][j][1])%mod;
else if(d == num[i])
dp[i][(j * 10 + d)%m][1] = ( dp[i][(j * 10 + d)%m][1] + dp[i-1][j][1])%mod;
}else{
for(int k = 0; k < 10; k++){
if(k == d) continue;
dp[i][(j * 10 + k)%m][0] = (dp[i][(j * 10 + k)%m][0] + dp[i - 1][j][0])%mod;
if(k < num[i])
dp[i][(j * 10 + k)%m][0] = ( dp[i][(j * 10 + k)%m][0] + dp[i - 1][j][1])%mod;
else if(k == num[i])
dp[i][(j * 10 + k)%m][1] = ( dp[i][(j * 10 + k)%m][1] + dp[i-1][j][1])%mod;
}
}
}
}
return (dp[cnt][0][0] + dp[cnt][0][1])%mod;
}
int is(char* a)
{
int res = 0;
for(int i = 0; i < strlen(a); i++){
int a1 = a[i] - '0';
if(i%2 == 0){
if(a1 == d) return 0;
}
if(i%2==1){
if(a1 != d) return 0;
}
res = (res*10 +a1)%m;
}
return res == 0;
}
int main (void)
{
scanf("%d%d",&m,&d);
scanf("%s%s", a, b);
printf("%d\n", (solve(b) - solve(a) +is(a)+mod)%mod) ;
return 0;
}
Codeforces 628D Magic Numbers的更多相关文章
- CodeForces 628D Magic Numbers (数位dp)
题意:找到[a, b]符合下列要求的数的个数. 1.该数字能被m整除 2.该数字奇数位全不为d,偶数位全为d 分析: 1.dp[当前的位数][截止到当前位所形成的数对m取余的结果][当前数位上的数字是 ...
- Codeforces 320A Magic Numbers
因为晚上有一个cf的比赛,而自己从来没有在cf上做过题,就找了道题熟悉一下. 题目大意:给一个数,判断是否能由1,14,144三个数连接得到. 代码如下: #include <stdio.h&g ...
- 628D Magic Numbers
传送门 题目大意 定义n-magic为从左往右,偶数位置均为n,奇数位置不为n的一类数.求出[a,b]内所有可被m整除的d-magic个数. 分析 显然是数位dp,我们用dp[i][j][k]表示考虑 ...
- Magic Numbers CodeForces - 628D
Magic Numbers CodeForces - 628D dp函数中:pos表示当前处理到从前向后的第i位(从1开始编号),remain表示处理到当前位为止共产生了除以m的余数remain. 不 ...
- Educational Codeforces Round 8 D. Magic Numbers 数位DP
D. Magic Numbers 题目连接: http://www.codeforces.com/contest/628/problem/D Description Consider the deci ...
- Codeforces CF#628 Education 8 D. Magic Numbers
D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- Educational Codeforces Round 8 D. Magic Numbers
Magic Numbers 题意:给定长度不超过2000的a,b;问有多少个x(a<=x<=b)使得x的偶数位为d,奇数位不为d;且要是m的倍数,结果mod 1e9+7; 直接数位DP;前 ...
- CodeForces 628 D Magic Numbers 数位DP
Magic Numbers 题意: 题意比较难读:首先对于一个串来说, 如果他是d-串, 那么他的第偶数个字符都是是d,第奇数个字符都不是d. 然后求[L, R]里面的多少个数是d-串,且是m的倍数. ...
- Codeforces Round #189 (Div. 2) A. Magic Numbers【正难则反/给出一个数字串判断是否只由1,14和144组成】
A. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
随机推荐
- Android开发中使用代码删除数据库
更多信息参考:Android开发中使用代码删除数据库 在Android开发中,如果用到数据库,就会有一个很麻烦的问题,就是有时候需要删除数据库很麻烦,要打开Android Device Monitor ...
- apache设置无缓存
打开httpd.conf 开启扩展 确保开启 LoadModule headers_module modules/mod_headers.so 添加配置项 并添加以下配置,跟据文件类型来让浏览器每次都 ...
- WebDAV协议
WebDAV是一项基于 Http1.1 协议的通信协议.它扩展了HTTP 1.1,在Get.Post.Put.Delete 等HTTP标准方法外添加了新方法,使应用程序可对Web Server直接读写 ...
- 基于ant design form的二次封装
// standardForm.js import React, { PureComponent } from 'react'; import PropTypes from 'prop-types'; ...
- 安装exe4j出现jre不匹配问题
在安装exe4j 客户端,提示如下错误: 提示的错误信息大意如下:install4j安装时,在本系统中没有找到JRE(JavaRuntime Environment)(版本要求:最低1.5,最高1.6 ...
- 用node写个简单的静态服务器
直接上代码吧,我把它命名为 app.js, 只要在该文件所在目录下,控制台运行 node app.js 即可启动一个本地服务器了. /** * 服务器 * Author jervy * Date */ ...
- 循环中i++和++i哪个好
推荐使用++i,因为不需要返回临时对象,执行效率更高.
- 51nod 1021 石子归并 - 区间dp(经典)
题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1021 经典区间dp,dp[i][j] 表示将从 i 到 j 堆 ...
- mysql负载均衡
一.docker安装haproxy:docker pull haproxy 二.配置haproxy(参考url:https://zhangge.net/5125.html),vim /usr/loca ...
- assert.notStrictEqual()详解
严格不相等测试,由不全等运算符确定(===). const assert = require('assert'); assert.notStrictEqual(1, 2); // OK assert. ...