链接

问题描述

小Hi和小Ho在经历了螃蟹先生的任务之后被奖励了一次出国旅游的机会,于是他们来到了大洋彼岸的美国。美国人民的生活非常有意思,经常会有形形色色、奇奇怪怪的活动举办,这不,小Hi和小Ho刚刚下飞机,就赶上了当地的迷宫节活动。迷宫节里展览出来的迷宫都特别的有意思,但是小Ho却相中了一个其实并不怎么像迷宫的迷宫——因为这个迷宫的奖励非常丰富~

于是小Ho找到了小Hi,让小Hi帮助他获取尽可能多的奖品,小Hi把手一伸道:“迷宫的介绍拿来!”

小Ho选择的迷宫是一个被称为“数字三角形”的n(n不超过200)层迷宫,这个迷宫的第i层有i个房间,分别编号为1..i。除去最后一层的房间,每一个房间都会有一些通往下一层的房间的楼梯,用符号来表示的话,就是从第i层的编号为j的房间出发会有两条路,一条通向第i+1层的编号为j的房间,另一条会通向第i+1层的编号为j+1的房间,而最后一层的所有房间都只有一条离开迷宫的道路。这样的道路都是单向的,也就是说当沿着这些道路前往下一层的房间或者离开迷宫之后,小Ho没有办法再次回到这个房间。迷宫里同时只会有一个参与者,而在每个参与者进入这个迷宫的时候,每个房间里都会生成一定数量的奖券,这些奖券可以在通过迷宫之后兑换各种奖品。小Ho的起点在第1层的编号为1的房间,现在小Ho悄悄向其他参与者弄清楚了每个房间里的奖券数量,希望小Hi帮他计算出他最多能获得多少奖券。

提示一:盲目贪心不可取,搜索计算太耗时

提示二:记忆深搜逞神威,宽度优先解难题

提示三:总结归纳提公式,减少冗余是真理

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第一行为一个正整数n,表示这个迷宫的层数。

接下来的n行描述这个迷宫中每个房间的奖券数,其中第i行的第j个数代表着迷宫第i层的编号为j的房间中的奖券数量。

测试数据保证,有100%的数据满足n不超过100

对于100%的数据,迷宫的层数n不超过100

对于100%的数据,每个房间中的奖券数不超过1000

对于50%的数据,迷宫的层数不超过15(小Ho表示2^15才3万多呢,也就是说……)

对于10%的数据,迷宫的层数不超过1(小Hi很好奇你的边界情况处理的如何?~)

对于10%的数据,迷宫的构造满足:对于90%以上的结点,左边道路通向的房间中的奖券数比右边道路通向的房间中的奖券数要多。

对于10%的数据,迷宫的构造满足:对于90%以上的结点,左边道路通向的房间中的奖券数比右边道路通向的房间中的奖券数要少。

输出

对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的最多奖券数。

样例输入

5

2

6 4

1 2 8

4 0 9 6

6 5 5 3 6

样例输出

28

题解

官方好像提供了两种思路

  1. 以\((i,j,k)\)代表从原点到第i层第j个得到奖券总数为k的状态。如果搜到一个新状态,且k<已得到的\((i,j,k)\)那么直接抛弃,反之把这个新的状态替代掉之前得到的状态,这样,保证每个房间入队一次,时间为\(O(n^2)\)
  2. \(dp[i][j]\)代表从原点到\((i,j)\)的最大获益,转移方程为$$dp[i][j]=max(dp[i-1][j],dp[i-1][j-1])+a[i][j]$$

参考代码

import java.io.*;
import java.util.*; public class Main {
static final int N=(int)105;
static int dp[][]=new int[N][N],
a[][]=new int[N][N];
public static void main(String[] args){
Scanner sc=new Scanner(new InputStreamReader(System.in));
int n=sc.nextInt();
for(int i=1;i<=n;i++) {
for(int j=1;j<=i;j++) {
a[i][j]=sc.nextInt();
}
}
for(int i=0;i<=n;i++) {
for(int j=0;j<=n;j++) dp[i][j]=0;
}
dp[1][1]=a[1][1];
for(int i=2;i<=n;i++) {
for(int j=1;j<=i;j++) {
dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-1])+a[i][j];
}
}
int ans=0;
for(int i=1;i<=n;i++) ans=Math.max(ans, dp[n][i]);
System.out.println(ans);
sc.close();
}
}

【HIHOCODER 1037】 数字三角形的更多相关文章

  1. hihoCoder 1037 数字三角形 最详细的解题报告

    题目来源:hihoCoder 1037 数字三角形 解题思路:请好好看看 提示一.提示二.提示三 具体算法(java版,可以直接AC) import java.util.Scanner; public ...

  2. hihocoder 1037 数字三角形

    #1037 : 数字三角形 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 问题描述 小Hi和小Ho在经历了螃蟹先生的任务之后被奖励了一次出国旅游的机会,于是他们来到了大洋彼岸 ...

  3. hihoCoder #1037 : 数字三角形 (动态规划)

    题目链接:https://hihocoder.com/problemset/problem/1037# 问题描述 小Hi和小Ho在经历了螃蟹先生的任务之后被奖励了一次出国旅游的机会,于是他们来到了大洋 ...

  4. hihoCoder#1037 : 数字三角形(DP)

    [题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 问题描写叙述 小Hi和小Ho在经历了螃蟹先生的任务之后被奖励了一次出国旅游的机会,于是他 ...

  5. poj-3176 Cow Bowling &&poj-1163 The Triangle && hihocoder #1037 : 数字三角形 (基础dp)

    经典的数塔模型. 动态转移方程:  dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+p[i][j]; #include <iostream> #include ...

  6. 【hihoCoder】1037 : 数字三角形

    题目:http://hihocoder.com/problemset/problem/1037 一个迷宫有n层,第 i 层有 i 个房间 从第i层的第i个房间(i, i)可以走到第i+1层的第i个房间 ...

  7. G:数字三角形

    总时间限制: 1000ms 内存限制: 65536kB描述73   88   1   02   7   4   44   5   2   6   5 (图1) 图1给出了一个数字三角形.从三角形的顶部 ...

  8. 4829 [DP]数字三角形升级版

    4829 [DP]数字三角形升级版  时间限制: 1 s  空间限制: 16000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 从数字三角形的顶部(如图, ...

  9. 【递归】数字三角形 简单dp

    [递归]数字三角形 题目描述 对于大多数人来说,“我们是这么的正常,因此也就这么的平庸.”而天才总是与众不同的,所以当邪狼问修罗王:“老大,你蹲在那儿一动不动看了有半个小时了,蚂蚁有那么好看吗?” 修 ...

随机推荐

  1. python之类的相关名词-继承-

    继承:父类有的功能,子类继承后也都有 继承是直接把父类方法写入子类的object里 如果定义的类有很多重复的功能,可以把重复的类定义成父类 静态方法:不需要实例化就可以调用,不可以调用类里面的变量和方 ...

  2. 机器学习概念之特征处理(Feature processing)

    不多说,直接上干货! 肯定也有不少博友,跟我一样,刚开始接触的时候,会对这三个概念混淆. 以下是,特征处理.特征提取.特征转换和特征选择的区别! 特征处理主要包含三个方面:特征提取.特征转换和特征选择 ...

  3. 关于发布WP 8.1应用信息不匹配问题的解决办法

    错误提示:   与此更新关联的程序包标识符与已上传程序包中的标识符不匹配: The package identity associated with this update doesn't match ...

  4. AJPFX总结抽象类和接口的区别

    /*                 * 抽象类和接口的区别                 *                 1.成员的区别                         *   ...

  5. AJPFX关于Swing组件的总结

    默认布局管理器是流式布局(FlowLayout) 按钮的建立: jb1=new JButton("香蕉") 面板的建立:jp1=new JPanel(); 设置JFrame的标题: ...

  6. Android提供的对话框

    1.普通对话框: 给出提示信息,有yes.no两个按钮. AlertDialog dialog=new AlertDialog.Builder(this) //this代表当前Activity对象,表 ...

  7. 里特定律 - Little's Law

    里特定律(Little's Law)源自排队理论,是IT系统性能建模中最广为人知的定律. 里特定律揭示了前置时间(Lead Time).在制品数量(Work In Progress, WIP)和吞吐率 ...

  8. RFS自动化测试(一)

    RFS 即 Robot Framework + Selenium RFS 的安装 1. python https://www.python.org/ RF框架是基于python的,所以要先安装有pyt ...

  9. C# string日期格式

    百分数格式应该用“p”这个参数. 格式 原始 数据 结 果 "{0:P}" 0.40 40% 数字 {0:N2} 12.36  数字 {0:N0} 13  货币 {0:c2} $1 ...

  10. Cognos报表验证(添加字段)

    1.打开后台Cognos 链接远程后台Cognos 2.打开要验证的报表 3.给右边的sql语句加个空格或者换行点击验证 4.查看业务视图中是否已经添加该字段 双击维度或者度量(添加字段所在的分类) ...