题面:

  把每两个点当成源汇,求N*(N-1)个最小割中不同的有多少个
  N<=850

分析:

  有这样一个结论:一张无向图不同的最小割最多有n-1个。

  那么我们一定可以建出一棵树,使得这棵树中每两个点之间的最小割等于原图的两个点间的最小割。

  我们倒也没必要吧这棵最小割树建出来。我们只需要做做样子,跑一下建树的过程就好,怎么办呢:

  我们在原无向图中任选两个点S,T,求出S-T最小割,那么可以在S-T中间加一条权值等于最小割值得无向边

  然后,分别对S属于的点集合和T属于的点集合递归做上面的过程,直到当前处理的集合只剩下一个点了

  处理的方法就像分治那样就好。

  注意建边时正反容量一样。注意每次要将边的流量恢复。记得要去重。

  具体请看代码:

 #include<bits/stdc++.h>
#define ms(a,x) memset(a,x,sizeof(a))
using namespace std;int tot=,n,m;
const int N=,M=,inf=0x3f3f3f3f;
struct node{int y,z,nxt;}e[M];int h[N],c=,q[M];
int S,T,d[N],a[N],tmp[N],ans[N][N],v[];
void add(int x,int y,int z){
e[++c]=(node){y,z,h[x]};h[x]=c;
e[++c]=(node){x,z,h[y]};h[y]=c;
} bool bfs(){
int f=,t=;ms(d,-);d[S]=;q[++t]=S;
while(f<=t){
int x=q[f++];
for(int i=h[x],y;i;i=e[i].nxt)
if(d[y=e[i].y]==-&&e[i].z)
d[y]=d[x]+,q[++t]=y;
} return (d[T]!=-);
} int dfs(int x,int f){
if(x==T) return f;int w,tm=;
for(int i=h[x],y;i;i=e[i].nxt)
if(d[y=e[i].y]==d[x]+&&e[i].z){
w=dfs(y,min(e[i].z,f-tm));
if(!w) d[y]=-;e[i].z-=w;
e[i^].z+=w;tm+=w;
if(tm==f) return f;
} return tm;
} void solve(int l,int r){
if(l>=r) return ;int sm=;
for(int i=;i<=c;i+=)
e[i].z=e[i^].z=(e[i].z+e[i^].z)>>;
S=a[l],T=a[r];int i,ql,qr;
while(bfs()) sm+=dfs(S,inf);
for(int i=;i<=n;i++) if(~d[i])
for(int j=;j<=n;j++)
if(d[j]==-)
ans[i][j]=ans[j][i]=min(ans[i][j],sm);
for(i=l,ql=l,qr=r;i<=r;i++)
if(~d[a[i]]) tmp[ql++]=a[i];
else tmp[qr--]=a[i];
for(int i=l;i<=r;i++) a[i]=tmp[i];
solve(l,qr);solve(ql,r);
} int main(){
scanf("%d%d",&n,&m);int an=;
for(int i=,x,y,z;i<=m;i++)
scanf("%d%d%d",&x,&y,&z),add(x,y,z);
for(int i=;i<=n;i++) a[i]=i;
ms(ans,0x7f);solve(,n);
for(int i=;i<=n;i++)
for(int j=+i;j<=n;j++)
v[++tot]=ans[i][j];
sort(v+,v++tot);v[]=-inf;
for(int i=;i<=tot;i++)
if(v[i]!=v[i-]) an++;
printf("%d\n",an);return ;
}

最小割树

BZOJ 4519 不同的最小割 最小割树的更多相关文章

  1. BZOJ 4519 [CQOI2016]不同的最小割

    这道题目很奇怪. 为什么奇怪?因为这道题用了一种叫分治最小割/最小割树的玩意. 以前从来没有见过这东西. 推荐一个讲这玩意的博客 写起来还是很顺手的. #include<iostream> ...

  2. scu - 3254 - Rain and Fgj(最小点权割)

    题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...

  3. 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流

    最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...

  4. 3532: [Sdoi2014]Lis 最小字典序最小割

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 865  Solved: 311[Submit][Status] ...

  5. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  6. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  7. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  8. 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)

    思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...

  9. [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)

    [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...

  10. [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)

    [BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...

随机推荐

  1. PHP小函数集-篇一

    一. 验证 /** * 判断用户名是否规范 */ function is_username($username) { if (preg_match("/^[a-zA-Z]{1}([0-9a- ...

  2. 5950 Recursive sequence (矩阵快速幂)

    题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn; 析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无 ...

  3. JS 自写datapage.js 通用分页

    var Page = function () { }; Page.prototype = {     Loading: "<img src='/Content/Scripts/Data ...

  4. python开发基础教程

    第一:python基础 第二:python异常处理类 第三:python装饰器  python常用的装饰器 第四:python发送邮件

  5. IDEA远程调试Tomcat程序

    如何使用 Idea 远程调试 Java 代码 IDEA远程调试的 基本就是在服务端先设置Tomcat服务器启动脚本catalina.bat,然后在客户端IDEA上进行参数配置,最后二者可以通过Sock ...

  6. 题解报告:hdu 1257 最少拦截系统(贪心)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1257 Problem Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是 ...

  7. MyEclipse去除不必要的validation

    MyEclipse在构建项目时去除不必要的Valication可以加快构建速度. 操作: Window->Perferences->MyEclipse->Validation 在Va ...

  8. [转]C# 邮箱验证激活

    原文链接 /// <summary> /// 发送邮件 发送激活码 /// </summary> /// <param name="address"& ...

  9. 451 Sort Characters By Frequency 根据字符出现频率排序

    给定一个字符串,请将字符串里的字符按照出现的频率降序排列.示例 1:输入:"tree"输出:"eert"解释:'e'出现两次,'r'和't'都只出现一次.因此' ...

  10. 转】在Ubuntu中安装Cassandra

    原博文出自于: http://blog.fens.me/category/%E6%95%B0%E6%8D%AE%E5%BA%93/ 感谢! Posted: Mar 22, 2014 Tags: cas ...