洛谷P3250 [HNOI2016]网络(整体二分+树状数组+树剖)
据说正解是树剖套堆???然而代码看着稍微有那么一点点长……
考虑一下整体二分,设当前二分到的答案为$mid$,如果所有大于$mid$的边都经过当前点$x$,那么此时$x$的答案必定小于等于$mid$
然后考虑怎么判断是否所有边都经过某一个点。我们可以用树状数组+树上差分来维护,把每一条边的两个端点的值加1,他们LCA的值减1,LCA父亲的值减1,那么如果这条边经过某一个点,那么这个点子树的和必定为1
于是我们可以把所有大于mid的边都处理出来,然后判断子树的和是否等于路径条数就行了。这个可以用dfs序+树状数组维护
然后整体二分的时候,我们还是能保证时间有序的,如果是修改,那么只有边数大于mid的修改要执行,否则直接扔到左边。询问的话,如果子树和等于大于mid的边数,就扔进左边,否则扔进右边
然后代码里是每一次修改的时候都求一遍LCA的,所以时间复杂度是$O(n\ log^2n)$,如果用ST表求LCA的话应该能再减掉一个$log$
//minamoto
#include<bits/stdc++.h>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int K=-,Z;
inline void Ot(){fwrite(sr,,K+,stdout),K=-;}
inline void print(int x){
if(K><<)Ot();if(x<)sr[++K]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++K]=z[Z],--Z);sr[++K]='\n';
}
const int N=2e5+;
int head[N],Next[N],ver[N],tot;
inline void add_edge(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
struct node{
int op,x,t,ans;
inline bool operator <(const node &b)const
{return t<b.t;}
}q[N],ll[N],rr[N];
int n,m,num,c[N],fa[N],top[N],sz[N],son[N],ls[N],rs[N],dep[N],cnt,mx;
int A[N],B[N],C[N],ans[N];
inline void add(int x,int y){for(;x<=n;x+=x&-x)c[x]+=y;}
inline int query(int x){
int res=;
for(;x;x-=x&-x) res+=c[x];
return res;
}
inline int query(int l,int r){return query(r)-query(l-);}
void dfs1(int u){
sz[u]=,dep[u]=dep[fa[u]]+,ls[u]=++cnt;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa[u]){
fa[v]=u,dfs1(v),sz[u]+=sz[v];
if(sz[son[u]]<sz[v]) son[u]=v;
}
}
rs[u]=cnt;
}
void dfs2(int u,int t){
top[u]=t;
if(son[u]){
dfs2(son[u],t);
for(int i=head[u];i;i=Next[i])
if(ver[i]!=fa[u]&&ver[i]!=son[u])
dfs2(ver[i],ver[i]);
}
}
inline int LCA(int u,int v){
while(top[u]!=top[v])
dep[top[u]]>dep[top[v]]?u=fa[top[u]]:v=fa[top[v]];
return dep[u]<dep[v]?u:v;
}
void update(int u,int v,int x){
int lca=LCA(u,v);
add(ls[u],x),add(ls[v],x),add(ls[lca],-x);
if(fa[lca]) add(ls[fa[lca]],-x);
}
void solve(int l,int r,int ql,int qr){
if(l==r){for(int i=ql;i<=qr;++i) if(q[i].op==) q[i].ans=l;return;}
int mid=(l+r)>>,path=,cl=,cr=;
for(int i=ql;i<=qr;++i){
if(q[i].op==){
if(query(ls[q[i].x],rs[q[i].x])==path) ll[++cl]=q[i];
else rr[++cr]=q[i];
}else{
if(C[q[i].x]<=mid) ll[++cl]=q[i];
else{
int x=q[i].op?-:;path+=x;
update(A[q[i].x],B[q[i].x],x);
rr[++cr]=q[i];
}
}
}
for(int i=;i<=cr;++i) if(rr[i].op!=){
int x=rr[i].op?:-;
update(A[rr[i].x],B[rr[i].x],x);
}
for(int i=;i<=cl;++i) q[ql+i-]=ll[i];
for(int i=;i<=cr;++i) q[ql+cl+i-]=rr[i];
if(cl) solve(l,mid,ql,ql+cl-);
if(cr) solve(mid+,r,ql+cl,qr);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=,u,v;i<n;++i)
u=read(),v=read(),add_edge(u,v),add_edge(v,u);
dfs1(),dfs2(,);
for(int i=;i<=m;++i){
q[i].op=read(),q[i].t=i;
if(!q[i].op){
A[i]=read(),B[i]=read(),C[i]=read();
q[i].x=i,cmax(mx,C[i]);
}else q[i].x=read();
}
solve(-,mx,,m);
sort(q+,q++m);
for(int i=;i<=m;++i)
if(q[i].op==) print(q[i].ans);
Ot();
return ;
}
洛谷P3250 [HNOI2016]网络(整体二分+树状数组+树剖)的更多相关文章
- 洛咕P3250 [HNOI2016]网络 整体二分
这题太神仙了必须写博客... 显然可以想到二分答案.二分一个答案mid,如果所有长度\(\geq mid\)的路径都过x,那么答案一定\(<mid\),否则答案\(\geq mid\). 那么就 ...
- [洛谷P3250][HNOI2016]网络
题目大意:给定一棵树.有三种操作: $0\;u\;v\;t:$在$u$到$v$的链上进行重要度为$t$的数据传输. $1\;x:$结束第$x$个数据传输. $2\;x:$询问不经过点$x$的数据传输中 ...
- 【BZOJ4538】[Hnoi2016]网络 整体二分+树状数组
[BZOJ4538][Hnoi2016]网络 Description 一个简单的网络系统可以被描述成一棵无根树.每个节点为一个服务器.连接服务器与服务器的数据线则看做一条树边.两个服务器进行数据的交互 ...
- BZOJ 4538: [Hnoi2016]网络 [整体二分]
4538: [Hnoi2016]网络 题意:一棵树,支持添加一条u到v权值为k的路径,删除之前的一条路径,询问不经过点x的路径的最大权值 考虑二分 整体二分最大权值,如果\(k \in [mid+1, ...
- 洛谷P3527 MET-Meteors [POI2011] 整体二分
正解:整体二分 解题报告: 传送门! 还有个双倍经验!(明明是一样的题目为什么你们一个紫一个黑啊喂! 这题首先要想到可以二分嘛,然后看到多组询问肯定就整体二分鸭 那就是基本套路啊,发现是区间修改单点查 ...
- UOJ#291. 【ZJOI2017】树状数组 树套树
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ291.html 题解 结论:这个写错的树状数组支持的是后缀加和后缀求和.这里的后缀求和在 x = 0 的时 ...
- POJ 2763 (LCA +RMQ+树状数组 || 树链部分) 查询两点距离+修改边权
题意: 知道了一颗有 n 个节点的树和树上每条边的权值,对应两种操作: 0 x 输出 当前节点到 x节点的最短距离,并移动到 x 节点位置 1 x val 把第 x 条边的权值改为 ...
- 【BZOJ4785】[Zjoi2017]树状数组 树套树(二维线段树)
[BZOJ4785][Zjoi2017]树状数组 Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一 ...
- 模拟赛 T3 DFS序+树状数组+树链的并+点权/边权技巧
题意:给定一颗树,有 $m$ 次操作. 操作 0 :向集合 $S$ 中加入一条路径 $(p,q)$,权值为 $v$ 操作 1 :给定一个点集 $T$,求 $T$ 的并集与 $S$ 中路径含交集的权和. ...
随机推荐
- React学习之State
本文基于React v16.4.1 初学react,有理解不对的地方,欢迎批评指正^_^ 一.定义组件的两种方式 1.函数定义组件 function Welcome(props) { return & ...
- Codeforces554E:Love Triangles
There are many anime that are about "love triangles": Alice loves Bob, and Charlie loves B ...
- java.util.MissingResourceException: Can't find resource for bundle oracle.sysman.db.rsc.LoginResourc
http://blog.itpub.net/197458/viewspace-1055358/ oracle 10.2.0.4 windows 2003 X64 平台 系统安装EMCA正常.第一次 ...
- 【网络】TCP协议
一.概述 主要特点: 1)面向连接的运输层协议 2)每一条TCP连接只能有两个端点,每一条TCP连接只能是点对点的(一对一) 3)TCP提供可靠交付的服务 4)TCP提供全双工通信 5)面向字节流:T ...
- Deepin-键盘快捷键
是不是很happy呢? 可以用键盘替代鼠标点点点了! 1.鼠标移到右下角 2.下翻找到"快捷键" 3.自定义一个 4.示例(首先编写个简单的Shell) 程序一般放在/usr/bi ...
- js中window.onload 与 jquery中$(document.ready()) 測试
js中window.onload 与 jquery中$(document.ready())差别,验证代码例如以下(调换js代码和Jquer代码书写顺序測试.执行结果一样.因此与代码书写位置没关系): ...
- Nginx在Linux下的安装部署
Nginx简单介绍 Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 server,也是一个 IMAP/POP3/SMTP server.Nginx作为 ...
- IIS 配置 FTP 网站 H5 音频标签自定义样式修改以及添加播放控制事件
IIS 配置 FTP 网站 在 服务器管理器 的 Web服务器IIS 上安装 FTP 服务 在 IIS管理器 添加FTP网站 配置防火墙规则 说明:服务器环境是Windows Server 200 ...
- ZrcListView
https://github.com/zarics/ZrcListView
- 强连通分量+poj2186
强连通分量:两个点能够互相连通. 算法分解:第一步.正向dfs全部顶点,并后序遍历 第二步,将边反向,从最大边dfs,构成强连通分量 标号最大的节点属于DAG头部,cmp存一个强连通分量的拓扑序. p ...