传送门

据说正解是树剖套堆???然而代码看着稍微有那么一点点长……

考虑一下整体二分,设当前二分到的答案为$mid$,如果所有大于$mid$的边都经过当前点$x$,那么此时$x$的答案必定小于等于$mid$

然后考虑怎么判断是否所有边都经过某一个点。我们可以用树状数组+树上差分来维护,把每一条边的两个端点的值加1,他们LCA的值减1,LCA父亲的值减1,那么如果这条边经过某一个点,那么这个点子树的和必定为1

于是我们可以把所有大于mid的边都处理出来,然后判断子树的和是否等于路径条数就行了。这个可以用dfs序+树状数组维护

然后整体二分的时候,我们还是能保证时间有序的,如果是修改,那么只有边数大于mid的修改要执行,否则直接扔到左边。询问的话,如果子树和等于大于mid的边数,就扔进左边,否则扔进右边

然后代码里是每一次修改的时候都求一遍LCA的,所以时间复杂度是$O(n\ log^2n)$,如果用ST表求LCA的话应该能再减掉一个$log$

 //minamoto
#include<bits/stdc++.h>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int K=-,Z;
inline void Ot(){fwrite(sr,,K+,stdout),K=-;}
inline void print(int x){
if(K><<)Ot();if(x<)sr[++K]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++K]=z[Z],--Z);sr[++K]='\n';
}
const int N=2e5+;
int head[N],Next[N],ver[N],tot;
inline void add_edge(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
struct node{
int op,x,t,ans;
inline bool operator <(const node &b)const
{return t<b.t;}
}q[N],ll[N],rr[N];
int n,m,num,c[N],fa[N],top[N],sz[N],son[N],ls[N],rs[N],dep[N],cnt,mx;
int A[N],B[N],C[N],ans[N];
inline void add(int x,int y){for(;x<=n;x+=x&-x)c[x]+=y;}
inline int query(int x){
int res=;
for(;x;x-=x&-x) res+=c[x];
return res;
}
inline int query(int l,int r){return query(r)-query(l-);}
void dfs1(int u){
sz[u]=,dep[u]=dep[fa[u]]+,ls[u]=++cnt;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa[u]){
fa[v]=u,dfs1(v),sz[u]+=sz[v];
if(sz[son[u]]<sz[v]) son[u]=v;
}
}
rs[u]=cnt;
}
void dfs2(int u,int t){
top[u]=t;
if(son[u]){
dfs2(son[u],t);
for(int i=head[u];i;i=Next[i])
if(ver[i]!=fa[u]&&ver[i]!=son[u])
dfs2(ver[i],ver[i]);
}
}
inline int LCA(int u,int v){
while(top[u]!=top[v])
dep[top[u]]>dep[top[v]]?u=fa[top[u]]:v=fa[top[v]];
return dep[u]<dep[v]?u:v;
}
void update(int u,int v,int x){
int lca=LCA(u,v);
add(ls[u],x),add(ls[v],x),add(ls[lca],-x);
if(fa[lca]) add(ls[fa[lca]],-x);
}
void solve(int l,int r,int ql,int qr){
if(l==r){for(int i=ql;i<=qr;++i) if(q[i].op==) q[i].ans=l;return;}
int mid=(l+r)>>,path=,cl=,cr=;
for(int i=ql;i<=qr;++i){
if(q[i].op==){
if(query(ls[q[i].x],rs[q[i].x])==path) ll[++cl]=q[i];
else rr[++cr]=q[i];
}else{
if(C[q[i].x]<=mid) ll[++cl]=q[i];
else{
int x=q[i].op?-:;path+=x;
update(A[q[i].x],B[q[i].x],x);
rr[++cr]=q[i];
}
}
}
for(int i=;i<=cr;++i) if(rr[i].op!=){
int x=rr[i].op?:-;
update(A[rr[i].x],B[rr[i].x],x);
}
for(int i=;i<=cl;++i) q[ql+i-]=ll[i];
for(int i=;i<=cr;++i) q[ql+cl+i-]=rr[i];
if(cl) solve(l,mid,ql,ql+cl-);
if(cr) solve(mid+,r,ql+cl,qr);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=,u,v;i<n;++i)
u=read(),v=read(),add_edge(u,v),add_edge(v,u);
dfs1(),dfs2(,);
for(int i=;i<=m;++i){
q[i].op=read(),q[i].t=i;
if(!q[i].op){
A[i]=read(),B[i]=read(),C[i]=read();
q[i].x=i,cmax(mx,C[i]);
}else q[i].x=read();
}
solve(-,mx,,m);
sort(q+,q++m);
for(int i=;i<=m;++i)
if(q[i].op==) print(q[i].ans);
Ot();
return ;
}

洛谷P3250 [HNOI2016]网络(整体二分+树状数组+树剖)的更多相关文章

  1. 洛咕P3250 [HNOI2016]网络 整体二分

    这题太神仙了必须写博客... 显然可以想到二分答案.二分一个答案mid,如果所有长度\(\geq mid\)的路径都过x,那么答案一定\(<mid\),否则答案\(\geq mid\). 那么就 ...

  2. [洛谷P3250][HNOI2016]网络

    题目大意:给定一棵树.有三种操作: $0\;u\;v\;t:$在$u$到$v$的链上进行重要度为$t$的数据传输. $1\;x:$结束第$x$个数据传输. $2\;x:$询问不经过点$x$的数据传输中 ...

  3. 【BZOJ4538】[Hnoi2016]网络 整体二分+树状数组

    [BZOJ4538][Hnoi2016]网络 Description 一个简单的网络系统可以被描述成一棵无根树.每个节点为一个服务器.连接服务器与服务器的数据线则看做一条树边.两个服务器进行数据的交互 ...

  4. BZOJ 4538: [Hnoi2016]网络 [整体二分]

    4538: [Hnoi2016]网络 题意:一棵树,支持添加一条u到v权值为k的路径,删除之前的一条路径,询问不经过点x的路径的最大权值 考虑二分 整体二分最大权值,如果\(k \in [mid+1, ...

  5. 洛谷P3527 MET-Meteors [POI2011] 整体二分

    正解:整体二分 解题报告: 传送门! 还有个双倍经验!(明明是一样的题目为什么你们一个紫一个黑啊喂! 这题首先要想到可以二分嘛,然后看到多组询问肯定就整体二分鸭 那就是基本套路啊,发现是区间修改单点查 ...

  6. UOJ#291. 【ZJOI2017】树状数组 树套树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ291.html 题解 结论:这个写错的树状数组支持的是后缀加和后缀求和.这里的后缀求和在 x = 0 的时 ...

  7. POJ 2763 (LCA +RMQ+树状数组 || 树链部分) 查询两点距离+修改边权

    题意: 知道了一颗有  n 个节点的树和树上每条边的权值,对应两种操作: 0 x        输出 当前节点到 x节点的最短距离,并移动到 x 节点位置 1 x val   把第 x 条边的权值改为 ...

  8. 【BZOJ4785】[Zjoi2017]树状数组 树套树(二维线段树)

    [BZOJ4785][Zjoi2017]树状数组 Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一 ...

  9. 模拟赛 T3 DFS序+树状数组+树链的并+点权/边权技巧

    题意:给定一颗树,有 $m$ 次操作. 操作 0 :向集合 $S$ 中加入一条路径 $(p,q)$,权值为 $v$ 操作 1 :给定一个点集 $T$,求 $T$ 的并集与 $S$ 中路径含交集的权和. ...

随机推荐

  1. POJ 1780 【手工递归】【欧拉回路】

    题意: 1.提供密码的位数. 2.密码的输入可以一直保持,取后n位作为密码.如果密码正确则开锁. 3.设计一种方法使得在输入最少的情况下破译.(即保证每个密码只输入一次) 4.输出输入的数字的序列. ...

  2. nexus3.1私服搭建

    原文:http://blog.csdn.net/qqqqq210/article/details/52993337 1.简介 近期公司需要搭建jenkins自动化构建部署,需要搭建nexus私服环境, ...

  3. Python导入模块的几种姿势

    中文翻译:http://codingpy.com/article/python-import-101/ 英文原文:http://www.blog.pythonlibrary.org/2016/03/0 ...

  4. Linux中查看文件或者文件夹大小

    df -l 查看磁盘空间大小命令 df -hl  查看磁盘剩余空间 df -h  查看每个根路径的分区大小 du -sh  当前文件夹下所有文件大小(包括子文件大小 du -sm  [文件夹] 返回该 ...

  5. uva live 12846 A Daisy Puzzle Game

    假设下一个状态有必败.那么此时状态一定是必胜,否则此时状态一定是必败 状压DP #include<iostream> #include<map> #include<str ...

  6. BZOJ 1055 HAOI2008 玩具取名 动态规划

    题目大意:给定一个由'W','I','N','G'构成的字符串.给定一些规则.这些规则能够将两个字符合成为一个,比如"II"能够合成为'W',"WW"能够合成为 ...

  7. powershell 通过SMTP发送邮件

    一直以来就用.net的方式发送邮件.由于powershell自带的方式用起来easy出错.且比較简单,近期看到一些人也反应使用中遇到麻烦. #定义函数 function sendmail($maila ...

  8. 编写高质量代码:改善C#程序的157个建议

    目录 前 言第一部分 语言篇第1章 基本语言要素 / 2建议1:正确操作字符串 / 2建议2:使用默认转型方法 / 6建议3:区别对待强制转型与as和is / 9建议4:TryParse比Parse好 ...

  9. 【转】实现LoadRunner多个场景的顺序执行

    应用场景假设有3个不同的测试场景,分别为并发登录.核心业务.可靠性测试,3个场景有先后执行顺序.由于白天测试机器另有用处,只能在晚上进行性能测试,这时我们的期望是能否把测试场景都设定好之后晚上自动运行 ...

  10. go内存泄露case

    用go写了一个守护进程程序:用于检測redis的存活状态并将结果写到zookeeper中,部署到redis机器上.对于每一个redis实例会有一个goroutine每隔固定时间去检測其状态,由主gor ...