Destroying Roads
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In some country there are exactly n cities and m bidirectional roads connecting the cities. Cities are numbered with integers from 1 to n. If cities a and b are connected by a road, then in an hour you can go along this road either from city a to city b, or from city b to city a. The road network is such that from any city you can get to any other one by moving along the roads.

You want to destroy the largest possible number of roads in the country so that the remaining roads would allow you to get from city s1 to city t1 in at most l1 hours and get from city s2 to city t2 in at most l2 hours.

Determine what maximum number of roads you need to destroy in order to meet the condition of your plan. If it is impossible to reach the desired result, print -1.

Input

The first line contains two integers nm (1 ≤ n ≤ 3000, ) — the number of cities and roads in the country, respectively.

Next m lines contain the descriptions of the roads as pairs of integers aibi (1 ≤ ai, bi ≤ nai ≠ bi). It is guaranteed that the roads that are given in the description can transport you from any city to any other one. It is guaranteed that each pair of cities has at most one road between them.

The last two lines contains three integers each, s1, t1, l1 and s2, t2, l2, respectively (1 ≤ si, ti ≤ n, 0 ≤ li ≤ n).

Output

Print a single number — the answer to the problem. If the it is impossible to meet the conditions, print -1.

Sample test(s)
input
5 4
1 2
2 3
3 4
4 5
1 3 2
3 5 2
output
0
input
5 4
1 2
2 3
3 4
4 5
1 3 2
2 4 2
output
1
input
5 4
1 2
2 3
3 4
4 5
1 3 2
3 5 1
output
-1

用dijkstra把每个点都跑一遍,求出任意点之间的最短路,然后先假设两条路之间没重叠,那么可以拆的路就是M - 最短路a - 最短路b,再假设有重叠,枚举他们重叠的段。要注意有可能出现起点和终点要互换的情况。
 #include <bits/stdc++.h>
using namespace std; const int INF = 0xfffffff;
const int SIZE = ;
int N,M,D[SIZE][SIZE];
int s_1,t_1,l_1,s_2,t_2,l_2;
bool S[SIZE];
struct Q_Node
{
int d,vec;
bool operator <(const Q_Node & r) const
{
return d > r.d;
};
};
vector<int> G[SIZE]; void dijkstra(int);
int main(void)
{
int from,to; scanf("%d%d",&N,&M);
for(int i = ;i < M;i ++)
{
scanf("%d%d",&from,&to);
G[from].push_back(to);
G[to].push_back(from);
}
for(int i = ;i <= N;i ++)
dijkstra(i); scanf("%d%d%d",&s_1,&t_1,&l_1);
scanf("%d%d%d",&s_2,&t_2,&l_2);
if(D[s_1][t_1] > l_1 || D[s_2][t_2] > l_2)
{
puts("-1");
return ;
} int min = D[s_1][t_1] + D[s_2][t_2];
int ans = ;
for(int i = ;i <= N;i ++)
for(int j = ;j <= N;j ++)
{
if(min > D[s_1][i] + D[s_2][i] + D[i][j] + D[j][t_1] + D[j][t_2])
if(D[s_1][i] + D[i][j] + D[j][t_1] <= l_1 &&
D[s_2][i] + D[i][j] + D[j][t_2] <= l_2)
min = D[s_1][i] + D[s_2][i] + D[i][j] + D[j][t_1] + D[j][t_2];
if(min > D[t_1][i] + D[t_2][i] + D[i][j] + D[j][s_1] + D[j][s_2])
if(D[t_1][i] + D[i][j] + D[j][s_1] <= l_1 &&
D[t_2][i] + D[i][j] + D[j][s_2] <= l_2)
min = D[t_1][i] + D[t_2][i] + D[i][j] + D[j][s_1] + D[j][s_2];
if(min > D[t_1][i] + D[s_2][i] + D[i][j] + D[j][s_1] + D[j][t_2])
if(D[t_1][i] + D[i][j] + D[j][s_1] <= l_1 &&
D[s_2][i] + D[i][j] + D[j][t_2] <= l_2)
min = D[t_1][i] + D[s_2][i] + D[i][j] + D[j][s_1] + D[j][t_2];
if(min > D[s_1][i] + D[t_2][i] + D[i][j] + D[j][t_1] + D[j][s_2])
if(D[s_1][i] + D[i][j] + D[j][t_1] <= l_1 &&
D[t_2][i] + D[i][j] + D[j][s_2] <= l_2)
min = D[s_1][i] + D[t_2][i] + D[i][j] + D[j][t_1] + D[j][s_2];
}
printf("%d\n",M - min); return ;
} void dijkstra(int s)
{
priority_queue<Q_Node> que;
Q_Node temp;
for(int i = ;i <= N;i ++)
{
D[s][i] = INF;
S[i] = false;
}
D[s][s] = ;
temp.d = ;
temp.vec = s;
que.push(temp); while(!que.empty())
{
int cur = que.top().vec;
que.pop();
S[cur] = true; for(int i = ;i < G[cur].size();i ++)
if(!S[G[cur][i]] && D[s][G[cur][i]] > D[s][cur] + )
{
D[s][G[cur][i]] = D[s][cur] + ;
temp.vec = G[cur][i];
temp.d = D[s][G[cur][i]];
que.push(temp);
}
}
}

CF Destroying Roads (最短路)的更多相关文章

  1. Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路

    题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...

  2. Codeforces 543B Destroying Roads(最短路)

    题意: 给定一个n个点(n<=3000)所有边长为1的图,求最多可以删掉多少条边后,图满足s1到t1的距离小于l1,s2到t2的距离小于l2. Solution: 首先可以分两种情况讨论: 1: ...

  3. Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路 删边

    题目:有n个城镇,m条边权为1的双向边让你破坏最多的道路,使得从s1到t1,从s2到t2的距离分别不超过d1和d2. #include <iostream> #include <cs ...

  4. Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路

    D - Destroying Roads Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...

  5. Codeforces 543.B Destroying Roads

    B. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  6. Codeforces Round #302 (Div. 1) B - Destroying Roads

    B - Destroying Roads 思路:这么菜的题我居然想了40分钟... n^2枚举两个交汇点,点与点之间肯定都跑最短路,取最小值. #include<bits/stdc++.h> ...

  7. [CF544D]Destroying Roads_最短路_bfs

    D. Destroying Roads 题目大意: In some country there are exactly n cities and m bidirectional roads conne ...

  8. B. Destroying Roads

    Destroying Roads 题目链接 题意 n个点,m条边每两个点之间不会有两个相同的边,然后给你两个起s1,s2和终点t1,t2; 求删除最多的边后满足两个s1到t1距离\(<=l1\) ...

  9. [CF544] D. Destroying Roads

    D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

随机推荐

  1. 未能加载文件或程序集"System.Data,Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089"或它的某一个依赖项。系统找不到指定的文件。

    sqlserver 2005打开出现无法正常访问数据,提示信息: 未能加载文件或程序集"System.Data,Version=2.0.0.0,Culture=neutral,PublicK ...

  2. ActiveMQ集成到Spring

    [http://wentao365.iteye.com/blog/1560934] spring配置文件applicationContext.xml <?xml version="1. ...

  3. win10的安装、win10启动盘制作

    需要的材料 win10映像 U盘 UltraISO软件 1.下载对应的win10映像 有64位和32位可选(自己找地方下) 2.下载UltraISO软件 3.准备一只U盘,插入电脑 4.启动Ultra ...

  4. NodeJs使用Mysql模块实现事务处理

    依赖模块: 1. mysql:https://github.com/felixge/node-mysql npm install mysql --save 2. async:https://githu ...

  5. C#生成不重复随机数的方法

    在使用Random类生成随机数时,我们可能会碰到生成随机数重复的问题. 比如我们要生成6位数字验证码,虽然也是使用Random,但是可能出现111111,999999这样的情况. 这是因为在实例化Ra ...

  6. Julien Nioche谈Apache Nutch 2的特性及产品路线图

    原文地址: http://www.infoq.com/cn/articles/nioche-apache-nutch2 开源的Web搜索框架Apache Nutch的2.1版本已于2012年10月5日 ...

  7. 深入Delphi -- Windows 消息机制

    http://www.txsz.net/xs/delphi/3/Windows%20%E6%B6%88%E6%81%AF%E6%9C%BA%E5%88%B6.htm Windows 消息机制 by m ...

  8. TCP连接(Time_Wait、Close_Wait)说明

    修改Time_Wait和CLOSE_WAIT时间 修改Time_Wait参数的方法 (在服务端修改)Windows下在HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlS ...

  9. hadoop备战:hadoop,hbase兼容版本号汇总

    Hbase的安装须要考虑Hadoop的版本号,即兼容性.有不足的希望能指出. 下面考究官网得到的,关于hadoop版本号和hbase版本号可到下面网址中下载:http://mirror.bit.edu ...

  10. Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) B. Guess the Permutation 水题

    B. Guess the Permutation 题目连接: http://www.codeforces.com/contest/618/problem/B Description Bob has a ...