CF Destroying Roads (最短路)
2 seconds
256 megabytes
standard input
standard output
In some country there are exactly n cities and m bidirectional roads connecting the cities. Cities are numbered with integers from 1 to n. If cities a and b are connected by a road, then in an hour you can go along this road either from city a to city b, or from city b to city a. The road network is such that from any city you can get to any other one by moving along the roads.
You want to destroy the largest possible number of roads in the country so that the remaining roads would allow you to get from city s1 to city t1 in at most l1 hours and get from city s2 to city t2 in at most l2 hours.
Determine what maximum number of roads you need to destroy in order to meet the condition of your plan. If it is impossible to reach the desired result, print -1.
The first line contains two integers n, m (1 ≤ n ≤ 3000,
) — the number of cities and roads in the country, respectively.
Next m lines contain the descriptions of the roads as pairs of integers ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi). It is guaranteed that the roads that are given in the description can transport you from any city to any other one. It is guaranteed that each pair of cities has at most one road between them.
The last two lines contains three integers each, s1, t1, l1 and s2, t2, l2, respectively (1 ≤ si, ti ≤ n, 0 ≤ li ≤ n).
Print a single number — the answer to the problem. If the it is impossible to meet the conditions, print -1.
5 4
1 2
2 3
3 4
4 5
1 3 2
3 5 2
0
5 4
1 2
2 3
3 4
4 5
1 3 2
2 4 2
1
5 4
1 2
2 3
3 4
4 5
1 3 2
3 5 1
-1 用dijkstra把每个点都跑一遍,求出任意点之间的最短路,然后先假设两条路之间没重叠,那么可以拆的路就是M - 最短路a - 最短路b,再假设有重叠,枚举他们重叠的段。要注意有可能出现起点和终点要互换的情况。
#include <bits/stdc++.h>
using namespace std; const int INF = 0xfffffff;
const int SIZE = ;
int N,M,D[SIZE][SIZE];
int s_1,t_1,l_1,s_2,t_2,l_2;
bool S[SIZE];
struct Q_Node
{
int d,vec;
bool operator <(const Q_Node & r) const
{
return d > r.d;
};
};
vector<int> G[SIZE]; void dijkstra(int);
int main(void)
{
int from,to; scanf("%d%d",&N,&M);
for(int i = ;i < M;i ++)
{
scanf("%d%d",&from,&to);
G[from].push_back(to);
G[to].push_back(from);
}
for(int i = ;i <= N;i ++)
dijkstra(i); scanf("%d%d%d",&s_1,&t_1,&l_1);
scanf("%d%d%d",&s_2,&t_2,&l_2);
if(D[s_1][t_1] > l_1 || D[s_2][t_2] > l_2)
{
puts("-1");
return ;
} int min = D[s_1][t_1] + D[s_2][t_2];
int ans = ;
for(int i = ;i <= N;i ++)
for(int j = ;j <= N;j ++)
{
if(min > D[s_1][i] + D[s_2][i] + D[i][j] + D[j][t_1] + D[j][t_2])
if(D[s_1][i] + D[i][j] + D[j][t_1] <= l_1 &&
D[s_2][i] + D[i][j] + D[j][t_2] <= l_2)
min = D[s_1][i] + D[s_2][i] + D[i][j] + D[j][t_1] + D[j][t_2];
if(min > D[t_1][i] + D[t_2][i] + D[i][j] + D[j][s_1] + D[j][s_2])
if(D[t_1][i] + D[i][j] + D[j][s_1] <= l_1 &&
D[t_2][i] + D[i][j] + D[j][s_2] <= l_2)
min = D[t_1][i] + D[t_2][i] + D[i][j] + D[j][s_1] + D[j][s_2];
if(min > D[t_1][i] + D[s_2][i] + D[i][j] + D[j][s_1] + D[j][t_2])
if(D[t_1][i] + D[i][j] + D[j][s_1] <= l_1 &&
D[s_2][i] + D[i][j] + D[j][t_2] <= l_2)
min = D[t_1][i] + D[s_2][i] + D[i][j] + D[j][s_1] + D[j][t_2];
if(min > D[s_1][i] + D[t_2][i] + D[i][j] + D[j][t_1] + D[j][s_2])
if(D[s_1][i] + D[i][j] + D[j][t_1] <= l_1 &&
D[t_2][i] + D[i][j] + D[j][s_2] <= l_2)
min = D[s_1][i] + D[t_2][i] + D[i][j] + D[j][t_1] + D[j][s_2];
}
printf("%d\n",M - min); return ;
} void dijkstra(int s)
{
priority_queue<Q_Node> que;
Q_Node temp;
for(int i = ;i <= N;i ++)
{
D[s][i] = INF;
S[i] = false;
}
D[s][s] = ;
temp.d = ;
temp.vec = s;
que.push(temp); while(!que.empty())
{
int cur = que.top().vec;
que.pop();
S[cur] = true; for(int i = ;i < G[cur].size();i ++)
if(!S[G[cur][i]] && D[s][G[cur][i]] > D[s][cur] + )
{
D[s][G[cur][i]] = D[s][cur] + ;
temp.vec = G[cur][i];
temp.d = D[s][G[cur][i]];
que.push(temp);
}
}
}
CF Destroying Roads (最短路)的更多相关文章
- Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路
题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...
- Codeforces 543B Destroying Roads(最短路)
题意: 给定一个n个点(n<=3000)所有边长为1的图,求最多可以删掉多少条边后,图满足s1到t1的距离小于l1,s2到t2的距离小于l2. Solution: 首先可以分两种情况讨论: 1: ...
- Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路 删边
题目:有n个城镇,m条边权为1的双向边让你破坏最多的道路,使得从s1到t1,从s2到t2的距离分别不超过d1和d2. #include <iostream> #include <cs ...
- Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路
D - Destroying Roads Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...
- Codeforces 543.B Destroying Roads
B. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #302 (Div. 1) B - Destroying Roads
B - Destroying Roads 思路:这么菜的题我居然想了40分钟... n^2枚举两个交汇点,点与点之间肯定都跑最短路,取最小值. #include<bits/stdc++.h> ...
- [CF544D]Destroying Roads_最短路_bfs
D. Destroying Roads 题目大意: In some country there are exactly n cities and m bidirectional roads conne ...
- B. Destroying Roads
Destroying Roads 题目链接 题意 n个点,m条边每两个点之间不会有两个相同的边,然后给你两个起s1,s2和终点t1,t2; 求删除最多的边后满足两个s1到t1距离\(<=l1\) ...
- [CF544] D. Destroying Roads
D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
随机推荐
- Firefox 设置技巧
在Firefox地址栏中输入“about:cache”并键入回车,接着将显示Firefox的内存缓冲设置与磁盘高速缓存设置.如果在页面上单击“List Cache Entries”链接,我们还可以查看 ...
- 错误"因为数据库正在使用,所以无法获得对数据库的独占访问权"的解决方案
今天在还原数据库的时候,提示"因为数据库正在使用,所以无法获得对数据库的独占访问权",无论我是重启数据库,还是重启计算机,都不能解决问题,多番尝试后,终于解决了该问题.现将引发该问 ...
- HTML第四天学习笔记
今天老师教了下无序列表和有序列表,虽然并没有,同时做了个随堂练习: <html> <head> <title>随堂练习00</title> <me ...
- 也来说说C#异步委托(转)
原文地址: http://www.cnblogs.com/lxblog/archive/2012/12/11/2813893.html 前些日子,看到园子里面有人用老王喝茶的例子讲解了一下同步和异步, ...
- php计算脚本执行时间
利用PHP的microtime实现 function getCurrentTime () { list ($msec, $sec) = explode(" ", microtime ...
- 开源图形库 c语言-图形图像库 集合[转]
开源图形库 c语言-图形图像库 集合[转] Google三维API O3D O3D 是一个开源的 Web API 用来在浏览器上创建界面丰富的交互式的 3D 应用程序.这是一种基于网页的可控3D标准. ...
- mysql 加入列,改动列,删除列。
MySQL 加入列,改动列,删除列 ALTER TABLE:加入,改动,删除表的列,约束等表的定义. 查看列:desc 表名; 改动表名:alter table t_book rename to bb ...
- 第12届北师大校赛热身赛第二场 C. 组合数
题目链接:http://www.bnuoj.com/bnuoj/contest_show.php?cid=3570#problem/43573 C. 组合数 Time Limit: 1000ms Ca ...
- jquery冲突
今天修改一个项目发现,前辈们自己写的一些方法和jquery冲突了,也就是$的冲突,以至于自己用jquery编写的新功能无法正常使用,细究后发现解决办法如下:使用 noConflict() 方法为 jQ ...
- 让Laravel5支持memcache的方法
Laravel5框架在Cache和Session中不支持Memcache,看清了是Memcache而不是Memcached哦,MemCached是支持的但是这个扩展真的是装的蛋疼,只有修改部分源码让其 ...