这是bestcorder 67 div1 的1003 当时不会做 看了赛后官方题解,然后翻译了一下就过了,而且速度很快,膜拜官方题解。。

附上官方题解:

the soldier of love

我们注意到我们求的是每一组至少覆盖一个点的线段数量。

那么我们可以先求一个点都没有覆盖的的线段数量,在用nn减去即可。

我们把所有点和线段先这样离线处理:

对于每个线段,在他的右端点处记上一个左端点的标记。

对于每组点,在除了第一个点之外的其他点上,记上一个前一个点的标记,同时记录下这个点的编号。

然后从1到10^6扫一遍数轴,对每个点处理所有标记,先处理点的。

对于每一个点,找到他的前一个点,把树状数组中[p_{now} - 1, p_{pre} + 1][p​now​​−1,p​pre​​+1]中的和累积到这个点的编号的答案里面。

然而这个树状数组是记录什么的呢,对于每个点,找到他的线段标记,也就是这个线段的左端点,把左端点的位置在树状数组里面累加。

也就是说,对当前这个位置,树状数组记录的都是右端点在当前点左边的所有线段的左端点的累加和。 就这样O((n+m_sum)log10^{6})O((n+m​s​​um)log10​6​​)的时间复杂度解决。

注:还有一点题解的做法,你记录3e5的点的数组需要开二倍,这一点很重要,我觉得好恶心,因为数组开小了,交到杭电,返回T,让我一度对官方题解产生了怀疑

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<cstdlib>
#include<vector>
#include<queue>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int maxn=+;
const int maxm=+;
struct Point
{
int x,pre,bel;
bool operator<(const Point &e)const
{
return x<e.x;
}
} o[maxm*];
struct Seg
{
int l,r;
bool operator<(const Seg &e)const
{
return r<e.r;
}
} e[maxm];
int c[maxn];
int lowbit(int x)
{
return x&(-x);
}
void add(int i)
{
while(i<maxn)
{
++c[i];
i+=lowbit(i);
}
}
int query(int i)
{
int sum=;
while(i>)
{
sum+=c[i];
i-=lowbit(i);
}
return sum;
}
int ans[maxm];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
memset(c,,sizeof(c));
memset(ans,,sizeof(ans));
for(int i=; i<=n; ++i)
scanf("%d%d",&e[i].l,&e[i].r);
int cnt=;
for(int i=; i<=m; ++i)
{
int k;
scanf("%d",&k);
for(int j=; j<k; ++j)
{
scanf("%d",&o[++cnt].x);
o[cnt].bel=i,o[cnt].pre=-;
if(j==)continue;
o[cnt].pre=o[cnt-].x;
}
o[++cnt].x=1e6+;
o[cnt].bel=i,o[cnt].pre=o[cnt-].x;;
}
sort(e+,e++n);
sort(o+,o++cnt);
int now=;
for(int i=; i<=cnt; ++i)
{
while(now<=n&&e[now].r<o[i].x)
{
add(e[now].l);
now++;
}
ans[o[i].bel]+=query(o[i].x-)-query(o[i].pre);;
}
for(int i=;i<=m;++i)
printf("%d\n",n-ans[i]);
}
return ;
}

HDU 5603 the soldier of love 离线+树状数组的更多相关文章

  1. HDU 5869 Different GCD Subarray Query 离线+树状数组

    Different GCD Subarray Query Problem Description   This is a simple problem. The teacher gives Bob a ...

  2. hdu 4605 Magic Ball Game (在线主席树/离线树状数组)

    版权声明:本文为博主原创文章,未经博主允许不得转载. hdu 4605 题意: 有一颗树,根节点为1,每一个节点要么有两个子节点,要么没有,每个节点都有一个权值wi .然后,有一个球,附带值x . 球 ...

  3. HDU 2852 KiKi's K-Number(离线+树状数组)

    题目链接 省赛训练赛上一题,貌似不难啊.当初,没做出.离线+树状数组+二分. #include <cstdio> #include <cstring> #include < ...

  4. 区间的关系的计数 HDU 4638 离线+树状数组

    题目大意:给你n个人,每个人都有一个id,有m个询问,每次询问一个区间[l,r],问该区间内部有多少的id是连续的(单独的也算是一个) 思路:做了那么多离线+树状数组的题目,感觉这种东西就是一个模板了 ...

  5. HDU - 4777 离线树状数组

    离线树状数组搞一搞. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #de ...

  6. HDU 4417 离线+树状数组

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. POJ 3416 Crossing --离线+树状数组

    题意: 给一些平面上的点,然后给一些查询(x,y),即以(x,y)为原点建立坐标系,一个人拿走第I,III象限的点,另一个人拿II,IV象限的,点不会在任何一个查询的坐标轴上,问每次两人的点数差为多少 ...

  8. CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组

    题目链接:CF #365 (Div. 2) D - Mishka and Interesting sum 题意:给出n个数和m个询问,(1 ≤ n, m ≤ 1 000 000) ,问在每个区间里所有 ...

  9. CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组(转)

    转载自:http://www.cnblogs.com/icode-girl/p/5744409.html 题目链接:CF #365 (Div. 2) D - Mishka and Interestin ...

随机推荐

  1. 1191: [HNOI2006]超级英雄Hero - BZOJ

    Description 现在电视台有一种节目叫做超级英雄,大概的流程就是每位选手到台上回答主持人的几个问题,然后根据回答问题的多少获得不同数目的奖品或奖金.主持人问题准备了若干道题目,只有当选手正确回 ...

  2. java 取小数点后两位 不四舍五入,怎么做

    java 取小数点后两位 不四舍五入,怎么做 正常版: //正常版: import java.text.DecimalFormat; import java.math.RoundingMode; De ...

  3. js注册登录审核

    <script type="text/javascript"> $(function(){ $("#sendSms").click(function ...

  4. JSP中脚本、声明和表达式的本质区别

     JSP脚本元素 使用JSP脚本元素可以将Java代码嵌入到JSP页面里,这些Java代码将出现在由当前JSP页面生成的Servlet中,使JSP将静态内容与动态内容分离出来.脚本元素包含:  1. ...

  5. Scala的Pattern Matching Anonymous Functions

    参考自http://stackoverflow.com/questions/19478244/how-does-a-case-anonymous-function-really-work-in-sca ...

  6. Android 控制ScrollView滚动到底部

    scrollView.fullScroll(ScrollView.FOCUS_DOWN);滚动到底部 scrollView.fullScroll(ScrollView.FOCUS_UP);滚动到顶部 ...

  7. 网上图书商城项目学习笔记-036工具类之CommonUtils及日期转换器

    1.CommonUtils.java package cn.itcast.commons; import java.util.Map; import java.util.UUID; import or ...

  8. BCB6编译LUA5.15成功!

    由于想要在一个原生应用里提供脚本功能,而Python的发布不能不说是一件麻烦事.因为所需要的脚本功能很简单,所以决定试试传说中的Lua. 第一步,下载源码.虽然Lua有提供二进制版本下载,但是因为我是 ...

  9. MyEclipse 启动tomcat时报错:Cannot change deployment state from ERROR to REDEPLOYING.ds

    myeclipse 启动tomcat时报错:Cannot change deployment state from ERROR to REDEPLOYING.ds - 刘琦的专栏 - 博客频道 - C ...

  10. 174. Dungeon Game

    题目: The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dung ...