poj 2115 C Looooops(扩展gcd)
这个题犯了两个小错误,感觉没错,结果怒交了20+遍,各种改看别人题解,感觉思路没有错误,就是wa.
后来看diccuss和自己查错,发现自己的ecgcd里的x*(a/b)写成了x*a/b。还有(LL)1<<k 写成了 (LL)(1<<k),记住了。。。
题意:
对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束。
若在有限次内结束,则输出循环次数。
否则输出死循环。取最小的满足 cx mod (2^k) = b - a的正x。
思路:
(A + Cx)%2^k = B;
A + Cx = B + 2^k*y;
Cx - 2^k*y = B - A;
令a = C; b = 2^k; c = B-A;
如果c%d != 0 无解;
否则 q = b/d;
结果为 x*(c/d)%q+q)%q。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#define LL long long
using namespace std; void exgcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if(!b) {d = a; x = ; y = ; }
else {exgcd(b, a%b, d, y, x); y-= x*(a/b); }
}
int main()
{
LL a, b, d, x, y, c, q;
LL A, B, C, k;
while(~scanf("%lld%lld%lld%lld", &A, &B, &C, &k))
{
if(A==&&B==&&C==&&k==)
break;
a = C; b = (LL)<<k; //注意1<<k;
c = B-A;
exgcd(a, b, d, x, y);
if(c%d)
printf("FOREVER\n");
else
{
q = b/d;
printf("%lld\n", (x*(c/d)%q+q)%q);
}
}
return ;
}
poj 2115 C Looooops(扩展gcd)的更多相关文章
- POJ 2115 C Looooops(扩展欧几里得应用)
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...
- poj 2115 C Looooops 扩展欧几里德
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 23616 Accepted: 6517 Descr ...
- POJ 2115 C Looooops(扩展欧几里得)
辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a ...
- POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)
分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...
- POJ 2115 C Looooops扩展欧几里得
题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...
- POJ 2115 C Looooops
扩展GCD...一定要(1L<<k),不然k=31是会出错的 .... C Looooops Time Limit: 1000MS Mem ...
- 【题解】POJ 2115 C Looooops (Exgcd)
POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...
- [POJ 2115} C Looooops 题解(扩展欧几里德)
题目描述 对于C的for(i=A ; i!=B ;i +=C)循环语句,给出A,B,C和k(k表示变量是在k进制下的无符号整数),判断循环次数,不能终止输出"FOREVER". 输 ...
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...
随机推荐
- centos wordpress
How To Install Linux, nginx, MySQL, PHP (LEMP) stack on CentOS 6 https://www.digitalocean.com/commun ...
- Qt postEvent
Qt3中可以直接向线程发送消息 QThread::postEventQ4中已不支持为了模拟向线程发送消息,可以通过QObject::moveToThread后,然后再向这个QObject发送消息 ob ...
- 怎样开启SQL数据库服务
使用数据库时开启服务是需要的,我给大家具体介绍几种方式开启SQL Sever 服务.这几种我都用图文的形式用三个开启方式给你展示,对于不会开启服务的朋友可以学习下,这些前提是你的电脑安装了SQL数据库 ...
- foxmail创建163公司企业邮箱的时候会出现ERR Unable to log on
foxmail创建163公司企业邮箱的时候会出现ERR Unable to log on 解决办法:把pop.qiye.163.com更改为pop.ym.163.com,瞬间创建成功....也许是网易 ...
- 1304: [CQOI2009]叶子的染色 - BZOJ
Description给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一 ...
- ios7去除手势滑动返回
if ([self.navigationController respondsToSelector:@selector(interactivePopGestureRecognizer)]) { sel ...
- 使用XFire+Spring构建Web Service(一)——helloWorld篇
转自:http://www.blogjava.net/amigoxie/archive/2007/09/26/148207.html原文出处:http://tech.it168.com/j/2007- ...
- 【POJ】【1061】/【BZOJ】【1477】青蛙的约会
扩展欧几里德 根据题意列出不定方程: (x+m*T)-(y+n*T)=k*L; //T表示跳了T次,由于是环,可能追了多圈,所以结果应为k*L 化简得 T(m-n)-kL=y-x; 这就成了我们熟悉 ...
- POJ3764 The xor-longest path Trie树
代码写了不到30分钟,改它用了几个小时.先说题意,给你一颗树,边上有权,两点间的路径上的路径的边权抑或起来就是路径的xor值,要求的是最大的这样的路径是多少.讲到树上的两点的xor,一个常用的手段就是 ...
- poj 3620 Avoid The Lakes(广搜,简单)
题目 找最大的一片湖的面积,4便有1边相连算相连,4角不算. runtime error 有一种可能是 数组开的太小,越界了 #define _CRT_SECURE_NO_WARNINGS #incl ...