会做jsoi那道game,这题就非常简单了吧

我们考虑空格的移动,显然,初始与空格位置距离为奇数的黑棋和距离为偶数的白棋并没有什么用,

空格不会移到那,我们直接把他们当作障碍,其他点我们当作可移动区域

这不就和game那道题一样了吗,只不过这题不问棋子放哪

而是给定棋子位置,问当前是否是先手必胜

(错误操作就是指当前是先手必胜而移动一格还是先手必胜的操作)

我们对图重新黑白染色,做二分图匹配,显然,棋子在一定能被匹配的点上时,是先手必胜

证明类似game,因为棋子在一定在一定能被匹配的点上,我们第一步走向匹配点

下一步对方要么不能走,要么走一条非匹配边,那所到达的点,一定是匹配了的

否则,一开始的点就不一定在匹配,与假设矛盾,所以最后走的一条边一定是匹配边得证

至于怎么找一定能被匹配的点,我们做完二分图匹配后,如果这个点匹配了,那么我们删掉这个点,从这个点配对的点出发看是否能找到增广路即可

 const dx:array[..] of longint=(,,,-);
dy:array[..] of longint=(,-,,); type node=record
po,next:longint;
end; var e:array[..] of node;
v:array[..] of boolean;
b:array[..,..] of longint;
a:array[..,..] of char;
mat,p,c:array[..] of longint;
t,xx,yy,i,n,m,j,k,len,x,y,ans:longint;
f1,f2:boolean; procedure add(x,y:longint);
begin
inc(len);
e[len].po:=y;
e[len].next:=p[x];
p[x]:=len;
end; function dfs(x:longint):boolean;
var i,y:longint;
begin
v[x]:=true;
i:=p[x];
while i<> do
begin
y:=e[i].po;
if not v[y] and (mat[y]<>-) then
begin
v[y]:=true;
if (mat[y]=) or dfs(mat[y]) then
begin
mat[y]:=x;
mat[x]:=y;
exit(true);
end;
end;
i:=e[i].next;
end;
exit(false);
end; function check:boolean;
var j,k:longint;
begin
k:=b[x,y];
j:=mat[k];
mat[j]:=;
mat[k]:=-;
if j= then exit(false)
else begin
fillchar(v,sizeof(v),false);
exit(not dfs(j));
end;
end; begin
readln(n,m);
for i:= to n do
begin
for j:= to m do
begin
read(a[i,j]);
if a[i,j]='.' then
begin
x:=i;
y:=j;
a[i,j]:='X';
end;
end;
readln;
end;
for i:= to n do
for j:= to m do
if (a[i,j]='O') xor ((abs(i-x)+abs(j-y)) mod =) then
begin
inc(t);
b[i,j]:=t;
end; for i:= to n do
for j:= to m do
if b[i,j]> then
begin
for k:= to do
begin
xx:=i+dx[k];
yy:=j+dy[k];
if b[xx,yy]> then add(b[i,j],b[xx,yy]);
end;
end; for i:= to t do
if mat[i]= then
begin
fillchar(v,sizeof(v),false);
dfs(i);
end; readln(k);
for i:= to k do
begin
f1:=check;
readln(x,y);
f2:=check;
if f1 and f2 then
begin
inc(ans);
c[ans]:=i;
end;
readln(x,y);
end;
writeln(ans);
for i:= to ans do
writeln(c[i]);
end.

bzoj2437的更多相关文章

  1. BZOJ2437 [Noi2011]兔兔与蛋蛋 【博弈论 + 二分图匹配】

    题目链接 BZOJ2437 题解 和JSOI2014很像 只不过这题动态删点 如果我们把空位置看做\(X\)的话,就会发现我们走的路径是一个\(OX\)交错的路径 然后将图二分染色,当前点必胜,当且仅 ...

  2. 【BZOJ2437】【NOI2011】兔兔与蛋蛋(博弈论,二分图匹配)

    [BZOJ2437][NOI2011]兔兔与蛋蛋(博弈论,二分图匹配) 题面 BZOJ 题解 考虑一下暴力吧. 对于每个状态,无非就是要考虑它是否是必胜状态 这个直接用\(dfs\)爆搜即可. 这样子 ...

  3. BZOJ2437 NOI2011兔兔与蛋蛋(二分图匹配+博弈)

    首先将棋盘黑白染色,不妨令空格处为黑色.那么移动奇数次后空格一定处于白色格子,偶数次后空格一定处于黑色格子.所以若有某个格子的棋子颜色与棋盘颜色不同,这个棋子就是没有用的.并且空格与某棋子交换后,棋子 ...

  4. bzoj2437 [Noi2011]兔兔与蛋蛋

    二分图博弈果然都是一个套路,必经点必胜,非必经点必败, 但是肯定不能每走一步就重新建图判断必胜还是必败,那么我们可以这样:每走一步就把这个点删掉,然后find他原来的匹配,如果找不到,就说明他是必经点 ...

  5. 【bzoj2437】[Noi2011]兔兔与蛋蛋 二分图最大匹配+博弈论

    Description Input 输入的第一行包含两个正整数 n.m. 接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母&quo ...

  6. 【BZOJ2437】[Noi2011]兔兔与蛋蛋(博弈+二分图)

    传送门 题意: 给出一个\(n*m\)的棋盘,上面有若干个黑色棋子,若干个白色棋子,还有一个空格. 每次先手选择一个空格,将它与相邻的某个白色棋子交换:后手则选择一个空格,与相邻的某个黑色棋子交换. ...

随机推荐

  1. Leetcode-Read N Characters Given Read4 II

    The API: int read4(char *buf) reads 4 characters at a time from a file. The return value is the actu ...

  2. 使用parseJSON代替eval

    有些程序员如果没有很好的在javascript中解析json数据,往往会直接eval把json转成js对象,这时候如果json的数据中包含了被注入的恶意数据,则可能导致代码注入的问题. 正确的做法是分 ...

  3. 搭建Asp.Net MVC4

    启动vs2012,开始创建一个新的web应用程序.使用菜单:“文件”>“新建项目” 请在左侧选择 Visual C#,然后选择ASP.NET MVC 4 Web 应用程序.命名您的工程为&quo ...

  4. Netty4.x中文教程系列(四) 对象传输

    Netty4.x中文教程系列(四)  对象传输 我们在使用netty的过程中肯定会遇到传输对象的情况,Netty4通过ObjectEncoder和ObjectDecoder来支持. 首先我们定义一个U ...

  5. SQL Server 之 DBCC

    --检查索引碎片情况 dbcc showconfig(tablename) 具体例子: --上图为碎片整理之前 ALTER INDEX ALL on Citation REBUILD --下图为碎片整 ...

  6. hdu 3807

    很好的思路     枚举有多少人有ipad 判是否满足题目给出的条件 #include <iostream> #include <cstring> #include <c ...

  7. 对于WIFI版ipad(无GPS芯片)定位功能的释疑

    把玩ipad(WIFI版ipad,无GPS芯片)很久时间了,曾今有很多人(包括我)也用过它的定位功能,发现它确实很准确,通常的误差在40米以内,所以很多人都怀疑这个版本的ipad是不是真的内置了GPS ...

  8. 理解lua 语言中的点、冒号与self

    转载自: http://blog.csdn.net/wangbin_jxust/article/details/12170233 lua编程中,经常遇到函数的定义和调用,有时候用点号调用,有时候用冒号 ...

  9. hdu 2736 Surprising Strings(类似哈希,字符串处理)

    重点在判重的方法,嘻嘻 题目 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<string.h> int ...

  10. VisualSvn Server介绍

    1 .VisualSvn Server  VisualSvn Server是免费的,而VisualSvn是收费的.VisualSvn是Svn的客户端,和Visual Studio集成在一起,但是不免费 ...